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T cell immunoglobulin mucin domain (TIM)-3 is an im-
munomodulatory molecule and upregulated in T cells by sev-
eral cytokines. TIM-3 also influences mast cell function but 
its transcriptional regulation in mast cells has not been 
clarified. Therefore, we examined the transcript level and the 
promoter activity of TIM-3 in mast cells. The TIM-3 transcript 
level was assessed by real-time RT-PCR and promoter activ-
ity by luciferase reporter assay. TIM-3 mRNA levels were in-
creased in HMC-1, a human mast cell line by TGF-β1 stim-
ulation but not by stimulation with interferon (IFN)-α, 
IFN-λ, TNF-α, or IL-10. TIM-3 promoter −349∼＋144 bp 
region relative to the transcription start site was crucial for 
the basal and TGF-β1-induced TIM-3 promoter activities in 
HMC-1 cells. TIM-3 promoter activity was increased by over-
expression of Smad2 and Smad4, downstream molecules of 
TGF-β1 signaling. Our results localize TIM-3 promoter ac-
tivity to the region spanning −349 to ＋144 bp in resting and 
TGF-β1 stimulated mast cells.
[Immune Network 2012;12(5):207-212]

INTRODUCTION

T cell immunoglobulin mucin domain (TIM)-3 is expressed 

in various leukocyte subpopulations and modulates their 

functions (1). It is expressed on the surfaces of exhausted 

T cells and involved in the downregulation of effector func-

tion of T cells (2-4). TIM-3 on dendritic cells promotes the 

uptake of apoptotic cells via interaction with phosphatidylser-

ine but suppresses the immunogenicity of nucleic acid via in-

teraction with HMGB1 (5,6). TIM-3 expression in mast cells 

influences cytokine production and apoptosis of these cells 

(7). However, the regulation of TIM-3 expression has not 

been well known.

Mast cells play a significant role in various immune 

responses. These cells lead allergic symptoms through secre-

tion of mediators and cytokines upon cross-linking of FcεRI 

(8). Mast cells contribute defense against pathogen; mice de-

void of mast cells die from infection that does not result in 

death in wild type mice (9). Protective immunity is enhanced 

by mast cell production of TNF-α and recruitment of neu-

trophils to the infectious site (9). Mast cells are also required 

for the development of collagen-induced rheumatoid arthritis 

and the induction of tolerance to skin graft (10,11).

To understand the regulation of TIM-3 expression in mast 

cells, we investigated the effect of various cytokines on TIM-3 

transcription and the activity of TIM-3 promoter in relation 

with TGF-β1 stimulation of mast cells. 

MATERIALS AND METHODS

Reagents
IFN-α, IFN-λ, TGF-β1, IL-10, and TNF-α were purchased 

from R&D Systems (Minneapolis, MN, USA). Expression vec-

tors for Smad2 and Smad4 were kindly provided by Dr. Cho 

(Dept. Biochemistry, Ajou University School of Medicine, 

Korea).
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Figure 1. TIM-3 mRNA expression was increased in HMC-1 cells by 
stimulation with TGF-β1 but not by stimulation with IFNs, IL-10, and
TNF-α. HMC-1 cells were treated for the indicated time with IFN-α
(100 U/ml), IFN-λ (100 ng/ml), TGF-β1 (2 ng/ml), IL-10 (10 ng/ml),
and TNF-α (10 ng/ml), respectively and then TIM-3 transcript levels 
were analyzed by real-time RT-PCR. TIM-3 transcript levels were 
normalized to GAPDH transcript levels. Relative Tim-3 mRNA levels
to control (Con, without cytokine treatment) were presented. *p＜
0.005.

Cell culture
HMC-1, a human mast cell line, was kindly provided by 

Professor Hyung Min, Kim (Kyunghee University, Suwon, 

Korea). HMC-1 cells were maintained in IMDM supplemented 

with 10% FBS, penicillin-streptomycin (each 100 U/ml, 100 

ug/ml). Similarly, HEK293 cells were maintained in RPMI 

1640 (Gibco BRL, Paisley, Scotland) supplemented with 10% 

FBS.

Real-time RT-PCR
The total RNA was isolated using RNA STAT-60 (Tel-Test, IN

C., Friendwood, TX, USA) and reverse transcribed using Supe

rscriptase II (Invitrogen, Carsbade, CA, USA). Real-time PCR 

was performed using primers (5’-TCCAAGGATGCTTACCACC

AG-3’: 5’-GCCAATGTGGATATTTGTGTTAGATT-3’) and a Taq

Man probe (5’-ACATGGCCCAGCAGAGACACAGACACT- 3’) fo

r TIM-3 transcript which was normalized to GAPDH transcript le

vels.

Plasmid construction
Luciferase reporter vectors were constructed by ligation of hu-

man TIM-3 promoter region DNA fragment into pGL-Basic 

vector (Promega, Madison, WI, USA). Human TIM-3 pro-

moter DNA was amplified by PCR using genomic DNA iso-

lated from HMC-1 cells. For amplification of TIM-3 −1677∼

＋144 DNA fragment, primers TIM3＋1 (5’-GGAGCTTGC-

AGAAGAAAAGTCAGAGGACACCTCTGTTAGG-3’) and 5’-AGA-

GCCTTGACCAAGTTCATGCTGCTAATAAAAATAACCCCAG-3’ 

were used. For TIM-3 −872∼＋144 DNA fragment, primers 

TIM3＋1 and 5’-CTTTTGCTTTTAAGGTGTCCAGATAAAGGT-

CACACTCCCAG-3’ were used. For TIM-3 −349∼＋144 DNA 

fragment, primers TIM3＋1 and 5’-CTGTGACCAAAGTTTA-

TGAAGCC-3’ were used. The PCR products was cloned into 

Topo TA cloning vector (Invitorgen) and the nucleotide se-

quences were verified by comparison with the gene sequence 

(NW_001838954). Then TIM-3 promoter DNA was subcloned 

into pGL-Basic vector using Nhe I and Bgl II and designated 

as T3U(1.8)-luc, T3U(1.0)-luc and T3U(0.5)-luc.

Luciferase reporter assay
HMC-1 cells (1×10

6
) were transfected with 3.6μg of lucifer-

ase reporter vector together with 400 ng of pEGFP-N1 plas-

mid (Clonetech, Mountain View, CA, USA) using electro-

porator (Digital Bio Technology, Seoul, Korea). The cells 

were incubated for 48 h in 5% CO2 incubator at the 37
o
C, 

and then luciferase activity was analyzed using luciferin 

(Promega, Madison, WI, USA) and luminometer (Molecular 

devices, Sunnyvale, CA, USA). The transfection efficiency was 

analyzed by GFP-expressing cell frequencies using flow cy-

tometer (FacsCanto). Similarly, luciferase activity was as-

sessed in HEK293 cells transfected with DNA using Lipofecta-

min 2000 (Invitrogen, Carsbade, CA, USA).

Statistics
Student’s t-test (p-value＜0.01) was used to determine stat-

istical significance.

RESULTS

TIM-3 transcription was upregulated in HMC-1 cells by 
TGF-β1 stimulation
In recent studies, TIM-3 mRNA and protein expression levels 

were up regulated in TGF-β1 stimulated- human mast cells 

(12) but the transcriptional regulation of TIM-3 by other 

stimulants has not been well explored. To address this issue 

a human mast cell line, HMC-1 cells were treated with various 

cytokines for the indicated time and then TIM-3 mRNA levels 

were determined by real-time RT-PCR. TIM-3 mRNA ex-

pression was not significantly enhanced by treatment with the 

indicated concentration of IFN-α IFN-λ, IL-10, or TNF-α 

(p＞0.05) but was significantly increased by TGF-β1 stim-

ulation of HMC-1 cells for 4 h (p＜0.005) (Fig. 1).
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Figure 2. Basal TIM-3 promoter activity in HEK293 and HMC-1 cells.
(A) Luciferase reporter vectors containing various length of TIM-3 
promoter region. (B) HEK293 (5×105) or (C) HMC-1 (1×106) cells 
were transfected with the indicated luciferase reporter vector together
with pEGFP-N1 vector (1/10 of total plasmid) and 48 h later luciferase
activity was measured and normalized to the frequencies of GFP- 
expressing cells. Relative luciferase activity to control (pGL-Basic) was
presented. The data are the mean±standard deviation of 5 experi-
ments. *p＜0.01.

Figure 3. TIM-3 promoter activity in HMC-1 cells stimulated with TGF-
β1. HMC-1 (1×106) cells were transfected with the indicated luci-
ferase reporter vector together with pEGFP-N1 vector (1/10 of total 
plasmid) and 42 h later treated with TGF-β1 (2 ng/ml) for 6 h. Then
luciferase activity was measured and normalized to the frequencies 
of GFP-expressing cells. Fold induction of luciferase activity by TGF-
β1 treatment was presented for each luciferase reporter vector. The 
data are the mean±standard deviation of 5 experiments. *p＜0.001.

TIM-3 promoter activity was increased in HMC-1 cells 
by TGF-β1 stimulation
To know the TIM-3 promoter is responsive to TGF-β1 stim-

ulation, we first examined the basal activity of TIM-3 pro-

moter by luciferase reporter assay using vectors depicted in 

Fig. 2A. Luciferase activities in both HEK293 cells and HMC-1 

cells transfected with T3U(0.5)-luc that contains proximal 

TIM-3 promoter were significantly higher than that of controls 

transfected with the empty vector pGL-Basic (Fig. 2B and C). 

Also, luciferase activities driven by T3U(1.0)-luc and T3U(1.8)-luc, 

respectively were significantly higher than that of controls but 

lower than that driven by T3U(0.5)-luc. These results indicate that 

the proximal TIM-3 promoter spanning from ＋144 to −349 

may consist of sufficient element for the basal level tran-

scription of TIM-3 in HMC-1 cells. 

We next analyzed the TIM-3 promoter activity in the pres-

ence of TGF-β1 stimulation (Fig. 3). Luciferase activity driv-

en by each luciferase reporter vector in the presence of TGF-

β1 was presented as fold induction relative to that in the 

absence of TGF-β1. Luciferase activity in HMC-1 cells trans-

fected with T3U(0.5)-luc or T3U(1.8)-luc was significantly in-

creased (2.3 and 2.6 fold, respectively) by TGF-β1 stim-

ulation compared to that in the absence of TGF-β1 stim-

ulation (p＜0.001). However, luciferase activity in HMC-1 

cells transfected with T3U(1.0)-luc or the empty pGL-Basic 

was not significantly increased by TGF-β1 stimulation com-

pared to that in the absence of TGF-β1 stimulation (p＞

0.01). These results suggest that TIM-3 promoter region may 

contain the TGF-β1 responsive elements.

TIM-3 promoter activity was upregulated by Smad2 
and Smad4 overexpression
To support the TGF-β1 responsiveness of the TIM-3 pro-

moter, we assessed TIM-3 promoter activity in the cells over-

expressing Smad2 and Smad4 that were reported to be in-

volved in the gene expression induced by TGF-β1 (13,14). 

Given that TGF-β responsive promoter activity was increased 

by overexpression of either Smad2 or Smad3 in HEK293 cells 

even in the absence of TGF-β stimulation (15), we analyzed 

TIM-3 promoter activity in HEK293 cells overexpressing 
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Figure 4. TIM-3 promoter activity was increased by Smad over-
expression in HEK293 cells. HEK293 cells (1×106) were transfected 
with T3U(1.8)-luc (1.8μg) together with the indicated Smad ex-
pression vector (＋: 0.9μg, ＋＋: 1.8μg) or control empty vector 
pcDNA (1.8μg). For normalization of transfection efficiency, pEGFP-
N1 vector (1/10 of total plasmid) was also co-transfected. After 48 h,
the luciferase activity was measured and normalized to the fre-
quencies of GFP-expressing cells. Fold induction of luciferase activity
compared to that in the absence of Smad overexpression was 
presented. The data are the mean±standard deviation of 5 experi-
ments. *p＜0.01.

Smad2 and/or Smad4 without TGF-β1 treatment (Fig. 4). 

Compared to control, luciferase activity was significantly in-

creased in HEK293 cells by overexpression of Smad2, Smad4 

or both (4.5, 5.8 and 11 fold, respectively) (p＜0.01). These 

results imply that TIM-3 promoter region may respond to 

TGF-β1 stimulation through Smad2 and Smad4 involvement.

DISCUSSION

In this study, we revealed that TIM-3 mRNA expression in 

a human mast cell line was increased by TGF-β1 stimulation 

but not by other stimuli such as interferon α and λ, TNF-α, 

and IL-10. TGF-β1 affects mast cell survival and functions. 

TGF-β1 inhibits IL-3-dependent mast cell proliferation and 

counterbalances the effect of IL-4 on mast cell survival, migra-

tion, and FcεRI expression (16,17). Also TGF-β1 can elicit 

mouse mast cell protease-1 expression (18) and mast cell 

tryptase expression in experimental emphysema model (19). 

Furthermore, TGF-β1 in both soluble and regulatory T 

cell-surface bound forms can escalate IL-6 production by mast 

cells (20). Our results (21) and the previous report by Wiener 

et al. (12) add another one to the effects of TGF-β1 on mast 

cells i.e. induction of TIM-3 expression. Except the report by 

Nakae et al. (7) that TIM-3 cross-linking by an anti-TIM-3 pol-

yclonal Ab can promote IL-4, IL-6 and IL-13 production but 

suppress mast cell apoptosis, little information is currently 

available regarding the role of TIM-3 in mast cell function.

We also demonstrated that TIM-3 promoter −349∼＋144 

bp region relative to the transcription start site was crucial for 

the basal and TGF-β1-induced TIM-3 transcription in HMC-1 

cells. Since T3U(0.5)-luc driven luciferase activity in HMC-1 

cells was greater than that driven by T3U(1.8)-luc or T3U(1.0)- 

luc, the DNA fragment of −349∼＋144 bp seems to contain 

elements for basal transcription of TIM-3. Compatible to our 

results, Zhang et al. (22) reported that the basal TIM-3 pro-

moter activity is localized to the region spanning −241 to ＋

63 bp in YT cells, a T/NK cell line. Apparently incompatible 

with our previous observation that TIM-3 promoter activity 

driven by the −1,362 to ＋144 bp region was not enhanced 

by TGF-β1 stimulation (21), luciferase activities under TIM-3 

promoter −349∼＋144 bp region and −1,677∼＋144 was 

significantly increased in HMC-1 cells by TGF-β1 stimulation 

(Fig. 3). Interestingly, the luciferase activity under TIM-3 pro-

moter −872∼＋144 was not significantly elevated by TGF-β

1 stimulation in the present study. Further study is required 

to investigate whether TIM-3 promoter −1,362 to −350 bp 

region may contain the element hindering the TGF-β1 re-

sponsiveness of TIM-3 promoter −349∼＋144 bp region.

We showed that overexpression of Smad2 and Smad4 upre-

gulated TIM-3 promoter activity in HEK293 cells. Smad2 and 

Smad4 are downstream signaling molecules and transcription 

factors of TGF-β1 signaling (13,14). Although there are three 

predicted Smad binding elements in TIM-3 promoter −349∼

＋144 bp region, further study should be followed to clarify 

whether Smad2 and Smad4 are directly bound to TIM-3 pro-

moter or indirectly involved in TIM-3 transcription in TGF-β1 

stimulated mast cells. In T cells, it was reported that two tran-

scription factors regulated TIM-3 transcription in different 

modes. T-box transcription factor T-bet increases Tim-3 tran-

scription via its interaction with Tim-3 promoter of mouse TH1 

cells at approximately 400 bp upstream of the first ATG, 

whereas signal transducer and activator of transcription 

(STAT)-4 dose not bind to the Tim-3 promoter but reduces 

Tim-3 expression in murine T cells when it is knocked-out 

(23). At present, critical role of MEK, another downstream sig-

naling molecule of TGF-β1 signal pathway, in TIM-3 induction 

is revealed in HMC-1 cells stimulated with TGF-β1 (21).

Conclusively, our results localize TIM-3 promoter activity 

in resting and TGF-β1 stimulated HMC-1 cells to the region 

from −349 to ＋144 bp relative to the transcription start site 

and propose a possible regulatory role of Smad2 and Smad4 
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in TIM-3 transcription of mast cells.
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