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Newly experienced events are often remembered together with how rewarding the experiences are personally. Although the hippocampus
is a candidate structure where subjective values are integrated with other elements of episodic memory, it is uncertain whether and how
the hippocampus processes value-related information. We examined how activity of dorsal CA1 and dorsal subicular neurons in rats
performing a dynamic foraging task was related to reward values that were estimated using a reinforcement learning model. CA1 neurons
carried significant signals related to action values before the animal revealed its choice behaviorally, indicating that the information on
the expected values of potential choice outcomes was available in CA1. Moreover, after the outcome of the animal’s goal choice was
revealed, CA1 neurons carried robust signals for the value of chosen action and they temporally overlapped with the signals related to the
animal’s goal choice and its outcome, indicating that all the signals necessary to evaluate the outcome of an experienced event converged
in CA1. On the other hand, value-related signals were substantially weaker in the subiculum. These results suggest a major role of CA1 in
adding values to experienced events during episodic memory encoding. Given that CA1 neuronal activity is modulated by diverse
attributes of an experienced event, CA1 might be a place where all the elements of episodic memory are integrated.

Introduction
Autobiographical memories for individual events are often
stored with their affective attributes such as how rewarding the
experiences are personally. Thus, subjective value of an experi-
enced event (i.e., desirability of event outcome) is an important
element of episodic memory in our daily lives. Nevertheless, it is
unclear how value-related information is combined with other
components of an experienced event to form a unified episodic
memory. Value-related information might be integrated with
other elements of episodic memory in the hippocampus, a brain
structure playing a crucial role in encoding episodic memory
(O’Keefe and Nadel, 1978; Squire, 1987). Alternatively, the hip-
pocampus might encode only factual information, which might
be integrated with value-related information elsewhere. In this
regard, numerous physiological studies have shown that activity
of hippocampal neurons can be modulated by reward. However,
the majority of these studies simply compared firing rates during
rewarded versus unrewarded trials or spatial firing patterns be-
fore and after changing reward location (Watanabe and Niki,

1985; Eichenbaum et al., 1987; Breese et al., 1989; Kobayashi et
al., 1997; Martin and Ono, 2000; Hollup et al., 2001; Hölscher et
al., 2003; Tabuchi et al., 2003; Smith and Mizumori, 2006; Wirth
et al., 2009); none of them investigated how neuronal activity is
modulated by a quantitative aspect of reward, such as its magni-
tude, delay, or probability. Hence, these studies do not tell us
whether the hippocampus processes information related to value
(i.e., quantitative estimate of expected return) (Sutton and Barto,
1998) or it simply transmits information on the occurrence of a
meaningful event. In the present study, to resolve this matter, we
recorded hippocampal neuronal activity in rats performing a dy-
namic foraging task. During this task, expected reward values
varied dynamically across trials according to the history of the
animal’s choices and their outcomes, so that neural activity re-
flecting expected reward values can be separated from the activity
that merely registers the receipt of reward (Kim et al., 2009; Sul et
al., 2010, 2011).

We examined value-related neuronal activity in CA1 and
subiculum, which receive dopaminergic projections from the
ventral tegmental area (Swanson et al., 1987; Gasbarri et al.,
1997). Numerous brain structures that are targets of dopaminer-
gic projections transmit value-related signals (Lee et al., 2012).
Also, a human brain imaging study has shown that stimuli with
large expected rewards elicited correlated activation of the hip-
pocampus and ventral tegmental area, which predicted successful
retrieval of the experienced stimuli (Adcock et al., 2006). We
therefore examined whether CA1 and subicular neuronal activity
was correlated with expected reward values that were estimated
with a reinforcement learning (RL) model (Sutton and Barto,
1998). We found that both CA1 and subiculum conveyed signif-
icant neural signals for the animal’s choice and its outcome over
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multiple trials, indicating that ingredient
neural signals for computing values based
on past experiences are available in both
structures. However, value signals were
significantly stronger in CA1, suggesting a
major role of CA1 in integrating value in-
formation with other elements of episodic
memory.

Materials and Methods
Subjects
Experiments were performed with eight young
male Sprague Dawley rats (�9 –11 weeks old,
330 –350 g). Upon arrival, the animals were in-
dividually housed in a colony room and ini-
tially allowed free access to food and water.
They were then subjected to water deprivation
(maintained at �80% ad libitum body weight)
with extensive handling for at least 1 week.
Once behavioral training began, they were re-
stricted to 30 min of access to water (but with
ad libitum access to food) after finishing one behavioral session per day.
Experiments were performed in the dark phase of a 12 h light/dark cycle.
The experimental protocol was approved by the Ethics Review Commit-
tee for Animal Experimentation of the Ajou University School of Medi-
cine, Korea.

Behavioral task
The animals were trained in a dynamic two-armed bandit task on a
modified T-maze (Fig. 1 A) as described previously (Huh et al., 2009; Kim
et al., 2009; Sul et al., 2010). It was a free binary choice task with each
choice associated with a different probability of reward that was constant
within a block of trials, but changed across blocks with no explicit sensory
cues. Each animal was tested for a total of 8 to 13 sessions, and each
session consisted of four blocks each consisting of 35– 45 trials. Four
combinations of reward probabilities were used in each session (0.72/
0.12, 0.63/0.21, 0.21/0.63 and 0.12/0.72), and their sequence was deter-
mined pseudorandomly with the constraint that the option with the
higher-reward probability always changed its location at the beginning of
a new block. The beginning of a new trial was defined as the time when
the animal arrived at the central stem from either goal, which was de-
tected by a photobeam sensor (Fig. 1 A, blue dotted line). A 2 s delay was
imposed at the beginning of each trial by raising the distal portion of the
central stem. It was lowered at the end of the delay period, allowing the
animal to move forward. When the animal arrived at either goal, which
was detected by a photobeam sensor that was placed 6 cm ahead of the
water delivery nozzle, an auditory tone [conditioned stimulus (CS); 9
and 1 kHz for rewarded and unrewarded trials that were counterbalanced
across animals] was delivered for 1 s, and 30 �l of water was delivered at
the CS offset in rewarded trials.

The maze was spatially divided into four different stages (Fig. 1 A). The
time of the animal’s entry into the proximal end of the stem stage (Fig.
1 A, blue dotted line) corresponds to the beginning of a new trial. The
border between the stem and approach stages was approximately where
the animal’s movement trajectories began to diverge according to the
animal’s goal choice. The borders between the approach and goal stages
corresponded to the positions of the photobeams located in the top alley
(6 cm ahead of the water delivery nozzle). Therefore, the onset of the CS
corresponded to the beginning of the goal stage. The goal stage was
temporally divided into CS (first 1 s during which an auditory tone was
presented) and reward (the rest) periods. The animals stayed at the goal
throughout the CS period in almost all (98.0%) trials. In addition, they
typically licked the water delivery nozzle during the reward period in
both rewarded and unrewarded trials. However, the duration of the re-
ward period was longer for rewarded (13.85 � 11.55 s) than unrewarded
(2.84 � 8.24 s; mean � SD) trials. The borders between the goal and
return stages were defined as the positions in the lateral allies 11 cm away
from the water delivery nozzle.

Analysis of behavioral data
Matching law. The animal’s choice behavior during the steady state (last
20 trials in each block) was fit to the following linear regression model
(generalized matching law) (Baum, 1974) for each animal:

CL

CR
� b�RL

RR
� a

, (1)

where CL (or CR) and RL (or RR) are choice frequency and reinforcement
frequency (i.e., the frequency of obtaining a reward) for the left (or right)
goal, respectively. The coefficient a denotes the sensitivity to the rein-
forcement ratio, and b is a bias term.

Logistic regression analysis. The effects of past choices and rewards on
the animal’s current choice were examined by performing a trial-by-trial
analysis of the animal’s choices using the following logistic regression
model (Kim et al., 2009):

log�pL�i�

pR�i�� � �
j�1

10

�j
r�RL�i � j� � RR�i � j��

� �
j�1

10

�j
c�CL�i � j� � CR�i � j�� � �0, (2)

where PL(i) [or PR(i)] is the probability of selecting the left (or right) goal
in the ith trial. The variables RL(i) [or RR(i)] and CL(i) [or CR(i)] are
reward delivery at the left (or right) goal (0 or 1) and the left (or right)
goal choice (0 or 1) in the ith trial, respectively. The coefficients �j

r and �j
c

denote the effect of past rewards and choices, respectively, and �0 is a bias
term. The coefficients were estimated from the entire behavioral data set
for each animal.

Reinforcement learning model. Action values for individual trials were
estimated using a simple RL model [Rescorla–Wagner rule (Rescorla and
Wagner, 1972) or temporal difference Q-learning model (Sutton and
Barto, 1998)] as follows. If choice is left, we have the following:

RPE � R�t� � QL�t�, (3)

QL�t � 1� � QL�t� � �RPE, (4)

QR�t � 1� � QR�t�, (5)

If choice is right we have the following:

RPE � R�t� � QR�t�, (6)

QR�t � 1� � QR�t� � �RPE, (7)

QL�t � 1� � QL�t�, (8)

where QL(t) and QR(t) denote the left and right action values, respectively
(i.e., reward expected from choosing the left or right goal), R(t) repre-

Figure 1. Behavioral task and recording sites. A, Dynamic foraging task. Rats were tested on a modified T maze to choose
between two locations (blue circles) that delivered water reward with different probabilities. The maze was divided spatially into
four different stages (stem, approach, goal, and return) as indicated by the dotted lines (blue dotted line, beginning of a trial).
Arrows indicate alternative movement directions of the animals. B, Recording sites. The photomicrographs are coronal sections of
the brain that were stained with cresyl violet. Single units were recorded from the dorsal CA1 (left) and dorsal subiculum (right).
The arrows indicate marking lesions. Scale bars: A, 10 cm; B, 1 mm.
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sents the reward in the tth trial (1 if rewarded and 0 otherwise), � is the
learning rate, and RPE denotes reward prediction error (the difference
between actual and expected rewards) (Sutton and Barto, 1998). Actions
were chosen in the RL model according to the softmax action selection
rule (Sutton and Barto, 1998) as the follows:

PL�t� �
1

1 � exp�� ��QL�t� � QR�t���
, (9)

where PL(t) is the probability of selecting the left goal, and � is the inverse
temperature that determines the degree of exploration in action selec-
tion. The parameters � (learning rate; 0.50 – 0.69; 0.57 � 0.06) and �
(inverse temperature; 1.98 –5.30; 3.22 � 1.09, mean � SD) of the RL
model were estimated for the entire data set from each animal using a
maximum likelihood procedure (Sul et al., 2010). How well the animal’s
choices were accounted for by the RL model was quantified by the neg-
ative log likelihood normalized by the number of trials as well as the
accuracy of the choices predicted by the model. The prediction accuracy
was obtained using a leave-one-out cross-validation procedure in which
the results from each session were tested with the model parameters
estimated using the data from all the other sessions for each animal.

Neurophysiology
Twelve tetrodes were chronically implanted in the left or right dorsal CA1
(3.8 mm posterior and 2.0 mm lateral to bregma; five animals) or dorsal
subiculum (6.0 mm posterior and 2.6 mm lateral to bregma; three ani-
mals; Fig. 1 B) under deep anesthesia with sodium pentobarbital (50
mg/kg). Recordings began when well-isolated unit signals were obtained
from the intended recording region in overtrained animals. Unit signals
were amplified with a gain of 10,000, filtered between 600 and 6000 Hz,
digitized at 32 kHz and stored on a personal computer using Cheetah
data acquisition system (Bozemann). The animal’s head position and
direction were monitored by tracking a set of light-emitting diodes
mounted on the headstage at 60 Hz. When recordings were completed,
small marking lesions were made, and recording locations were verified
histologically as described previously (Song et al., 2005).

Analysis of neural data
Isolation and classification of units. Single units were isolated off-line
based on various spike waveform parameters using Mclust software
(A. D. Redish, Department of Neuroscience, University of Minnesota,
Minneapolis, MN) as described previously (Lee et al., 2009). Recorded
units were classified based on mean discharge rate and a burst index (the
percentage of interspike intervals shorter than one-fourth of each neu-
ron’s mean interspike interval; Fig. 2). Low-rate, high-bursting units
were classified as putative pyramidal cells in both areas (Ranck, 1973;
Sharp and Green, 1994; Staff et al., 2000) and were included in the anal-

ysis. The remaining units excluded from the
analysis are likely to consist of multiple cell
types including inhibitory interneurons. Simi-
lar results were obtained, however, when the
low-rate, low-bursting units were also included
in the analysis (see Fig. 7D). The cutoff values
were determined based on the distributions of
the indices (mean discharge rates, 7 and 8 Hz
for CA1 and subiculum, respectively; burst in-
dex, 40%). The majority were putative pyrami-
dal cells (CA1, 325 of 354, 91.8%; subiculum,
115 of 172, 66.9%), and their mean discharge
rates were 1.06 � 0.05 Hz in CA1 and 1.93 �
0.12 Hz in the subiculum, and their mean per-
centages of short interspike intervals (less than
one-fourth of each neuron’s mean interspike
interval) were 68.7 � 0.5% in CA1 and 59.7 �
0.9% in the subiculum. For the remaining neu-
rons, the mean discharge rates were 12.31 �
1.92 Hz in CA1 and 7.55 � 0.69 Hz in the
subiculum, and the mean percentages of short
interspike intervals were 26.7 � 1.7% in CA1
and 28.1 � 1.4% in the subiculum.

Determination of place fields. Because the an-
imals ran along relatively narrow (8 cm) tracks, the maze was linearized
and one-dimensional place fields were determined for each neuron. The
animal’s movement trajectories were mapped onto straight lines begin-
ning from the lower portion of the central stem (Fig. 1 A, blue dotted
line). The last 10 cm of the linearized trajectory was removed because
sharply curved trajectories in this portion of maze made linearization
difficult. A spatial firing rate map was constructed for each neuron by
dividing spike counts with occupancies (the amounts of time the animal
spent) in 2 cm bins that were smoothed with a 4 cm SD Gaussian curve.
A place field was defined as a set of adjacent bins that met the following
criteria (Frank et al., 2000; Kjelstrup et al., 2008): (1) there should be five
or more adjacent bins in which firing rate of a neuron was above 30% of
its maximum firing rate across bins, (2) the mean firing rate of a neuron
during the task should exceed 0.1 Hz, (3) the maximum firing rate of a
place field should exceed 3 Hz, and (4) the total number of spikes within
each place field should be at least 100. Spatial information content per
spike (the amount of information about spatial location conveyed by a
single spike of a given neuron) was also calculated as described previously
(Skaggs et al., 1993).

Merged place fields. Neural data within a place field that was located on
either side of the maze (approach, goal, and return stages; Fig. 1 A) were
merged with those in the corresponding bins on the opposite side to form
a merged place field (MPF; see Fig. 4 A) so that neural activity related to
the animal’s goal choice and other variables, such as choice outcome and
action value, can be analyzed simultaneously using a multiple regression
model. This was particularly useful for quantitatively comparing
strengths of different types of neural signals including choice signals
across different stages of the task. Here, side specificity of place fields is
captured by the activity related to the animal’s goal “choice” in the re-
gression models. Similar conclusions were obtained, however, when in-
dividual place fields were analyzed separately (see below). For those
neurons that had place fields on both sides of the maze at corresponding
locations (when the center of one place field fell within the place field at
the opposite side), the union of the two MPFs was considered as a
single MPF so that the same neural activity was not analyzed twice
(CA1, 22 MPFs; subiculum, 52 MPFs). As a result, 275 CA1 and 136
subicular MPFs were subjected to analysis. In addition, for those place
fields located on the central stem, individual place fields were ana-
lyzed separately (CA1, n � 70; subiculum, n � 45).

Multiple regression analysis. Neural signals for the animal’s goal choice
(C; left or right; dummy variable, 1 and �1), its outcome (R; rewarded or
unrewarded; dummy variable, 1 and �1), and their interaction (X � C �
R; dummy variable, 1 and �1) in the current and previous trials (t and

Figure 2. Unit classification. The scatter plots show mean discharge rates and values of the burst index (the percentage of
interspike intervals shorter than one-fourth of each neuron’s mean interspike interval) for individual CA1 and subicular neurons.
Those units with low discharge rates (CA1, 	7 Hz; subiculum, 	8 Hz) and large burst index values (�40% for both CA1 and
subiculum) were classified as putative pyramidal cells.
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t � 1, respectively) were estimated using the following multiple regres-
sion model:

S�t� � a0 � a1C�t� � a2R�t� � a3X�t� � a4C�t � 1� � a5R�t � 1�

� a6X�t � 1� � a7
P � B�t� � A�t� � ��t�, (10)

where S(t) indicates spike discharge rate, A(t) is a set of autoregressive
terms (spike discharge rates in the previous five trials), 
P is the differ-
ence in objective reward probabilities within each block (Pleft � Pright;
i.e., a variable for behavioral context), �(t) is the error term, and a0�a7

are the regression coefficients; B(t) is a set of behavioral variables (each
multiplied by its regression coefficient) included in all regression models
to account for the effect of the animal’s head position and movement
speed on trial-by-trial neuronal activity. For the place-field-based anal-
yses, B(t) included mean lateral head position along the trajectory and
mean movement speed within each place field. For the temporal
window-based analyses, mean head position on the linearized trajectory
within each analysis window was additionally included to control for
positional variation. Significant fractions of CA1 and subicular neurons
modulated their activity according to each component of these behav-
ioral variables (data not shown). The animal’s head direction was not
included in the regression models, because the animal navigated along
stereotyped trajectories and it was highly correlated with the animal’s
goal choice (left vs right), especially during the approach and return
stages (when the animal was running forward). However, adding hori-
zontal and vertical components of mean head direction [cos(	) and
sin(	), where 	 is the mean head direction] to the regression models
yielded similar results, except that current choice signals were weakened
due to their correlation with the mean horizontal head position (see Fig.
7C; Table 3). Note that the animal’s “goal choice” in the approach, goal,
and return stages represents which side of the maze the animal is located
on. Neural activity related to the animal’s goal choice in these stages
might represent neural activity related to the animal’s spatial location,
head direction (when it is not included in the regression model), or
different sensory features associated with the two sides of the maze, and
its precise origin cannot be determined in this study.

Neural signals for action value and chosen value were also estimated
using multiple linear regression analyses. The neural data on the central
stem (before behavioral manifestation of the animal’s goal choice) were
analyzed with the following regression model:

S�t� � a0 � a1QL�t� � a2QR�t� � a3Qc�t� � B�t� � A�t� � ��t�,

(11)

where QL(t) and QR(t) denote the action values for the leftward and
rightward goal choices, respectively, and Qc(t) is the chosen value in trial
t [the value of chosen action in a given trial; i.e., QL(t) in left-choice trials
and QR(t) in right-choice trials]. For the analysis of neural data in the goal
stage (after choice outcome is revealed), the animal’s current goal choice,
its outcome, and their interaction were added to Equation 11 as follows:

S�t� � a0 � a1QL�t� � a2QR�t� � a3Qc�t� � a4C�t� � a5R�t�

� a6X�t� � B�t� � A�t� � ��t�. (12)

For the analysis of neural data within individual place fields (instead of
MPFs) that were located in the goal stage, the following regression model
was used without the choice term:

S�t� � a0 � a1Qc�t� � a2R�t� � B�t� � A�t� � ��t�. (13)

The neural data on the central stem were additionally analyzed with the
following regression model to examine their dependence on the absolute
difference in action values (�
Q(t)� � �QL(t) � QR(t)�) as a measure of
goal conflict (Gray and McNaughton, 2000):

S�t� � a0 � a1QL�t� � a2QR�t� � a3Qc�t� � a4�
Q�t�� � B�t�

� A�t� � ��t�. (14)

The following regression models were used to determine whether neu-
ronal activity of those MPFs in the goal stage is more correlated with RPE
or updated chosen value [Qc(t �1)]:

S�t� � a0 � a1QL�t� � a2QR�t� � a3C�t� � a4RPE � B�t� � A�t�

� ��t�, (15)

S�t� � a0 � a1QL�t� � a2QR�t� � a3C�t� � a4Qc�t � 1� � B�t�

� A�t� � ��t�, (16)

where RPE � R(t) � Qc(t) and Qc(t �1) � Qc(t) � �RPE (� is the
learning constant, which was determined separately for each animal).

Identification of sharp wave ripple events. Sharp wave ripple (SWR) events
were identified based on local field potentials that were recorded through
one channel of each tetrode as described previously (Frank et al., 2000; Kjel-
strup et al., 2008). Briefly, local field potential data were bandpass filtered
(150–250 Hz), subjected to Hilbert transformation to determine the SWR
envelope, and then smoothed with a Gaussian kernel (
 � 4 ms). SWR
events were defined as the time periods during which the smoothed envelope
stayed above 3 SD of the mean for at least 15 ms on at least one tetrode.
Successive SWR events that were 	100 ms apart were considered as a
single event, and 20 ms were added to the beginning and end of each SWR
event. The identified SWR periods (1457 � 1022 events per session,
mean � SD) were removed and then the regression analysis examining
choice- and outcome-related neural activity (Eq. 10) was applied to the
resulting neural data.

Statistical analysis
Statistical significance of a regression coefficient was determined us-
ing a t test, and significance of the fraction of neurons (or place fields)
for a given variable was determined with a binomial test. Significance
of a difference between the expected and the observed numbers of
neurons (or place fields) was determined with a � 2 test. Fisher’s exact
test was used instead of a � 2 test, however, whenever the expected
number was equal to or less than five. A p value 	0.05 was used as the
criterion for a significant statistical difference unless noted otherwise.
Data are expressed as mean � SEM unless noted otherwise.

Results
Behavior
The animals quickly responded to changes in relative reward
probabilities and altered their choice strategy accordingly after
each block transition (Fig. 3A), so that the animal’s choice behav-
ior during the steady state (last 20 trials in each block) was con-
sistent with the generalized matching law (Baum, 1974) (Fig. 3B).
A logistic regression analysis revealed that a reward delivered at a
particular goal biased the animal to repeat the same goal choice in
subsequent trials (Fig. 3C), indicating that the animal’s choice be-
havior was dependent on the history of previous choices and their
outcomes. Consistent with these results, the animal’s choice behav-
ior was well described by the RL model (Fig. 3A), suggesting that the
animals made their trial-by-trial goal choices based on action values
computed from the history of previous choices and their outcomes.

Mean values for normalized negative likelihood of the RL
model were 0.47 � 0.01 and 0.43 � 0.02 per session for the
animals used for CA1 (n � 5) and subicular (n � 3) recordings,
respectively, which were not significantly different from each
other (Wilcoxon rank-sum test, p � 0.170); the model’s predic-
tions of the animal’s actual choices based on leave-one-out cross-
validation procedure were 77.1 � 0.9 and 79.1 � 1.3% correct per
session for the animals used for CA1 and subicular recordings,
respectively, which were not significantly different from each
other either (p � 0.198; Fig. 3D). Likewise, no significant differ-
ence was found between the animals used for CA1 and subicular
recordings in the mean percentages of trials in which the animal
chose the goal with the higher reward probability (p � 1.000) or
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made its choice using the win–stay (p � 0.786) or lose–switch
strategy (p � 0.143; Fig. 3E–G). Choice bias (percentage of the
choice for a preferential goal in a given session) and mean trial
duration were also similar between the two groups of animals
(p � 1.000 and 0.250, respectively; Fig. 3H, I). Thus, no signifi-
cant difference was found in the behavioral performance between
the two groups of animals.

Spatial firing characteristics
We recorded activity of 325 and 115 putative pyramidal cells
from the dorsal CA1 and dorsal subiculum, respectively (Figs. 1B,
2). Their mean discharge rates were 1.06 � 0.05 and 1.93 � 0.12
Hz on the maze, respectively, and this difference was statistically
significant (Wilcoxon rank-sum test; p 	 0.001). As reported
previously for CA1 (O’Keefe and Dostrovsky, 1971; O’Keefe and
Nadel, 1978) and subiculum (Sharp and Green, 1994), the re-
corded neurons showed spatially selective firing on the maze. A
total of 264 CA1 (81.2%) and 99 subicular (86.1%) neurons had
at least one place field on the linearized maze. Of these, 86 CA1
(32.6%) and 77 subicular (77.8%) neurons had multiple place
fields (Fig. 4). Consistent with previous findings (Barnes et al.,
1990; Sharp and Green, 1994), CA1 neurons showed more fo-
cused spatial firing than subicular neurons, as reflected by higher
spatial information content per spike, smaller field size, and
higher infield/outfield firing ratio (Table 1).

Neural activity related to choice and outcome
We analyzed neural activity related to the animal’s choice and its
outcome and action value in both spatial and temporal domains.
Because place-specific firing is a strong characteristic of CA1
(O’Keefe and Dostrovsky, 1971; O’Keefe and Nadel, 1978) and
subicular (Sharp and Green, 1994) neurons, we analyzed spike
data within each place field (analysis in the spatial domain). In
addition, to examine temporal dynamics of valuation-related
neural activity, we analyzed neural activity within fixed time win-
dows (analysis in the temporal domain). For the analysis in the
spatial domain, those place fields located on either side of the
maze (approach, goal, and return stages) were merged with those
in the corresponding bins on the opposite side to form MPFs (see
Materials and Methods; Fig. 4A) so that neural activity related to
the animal’s goal choice and other variables can be analyzed to-
gether using a multiple regression model.

Of all analyzed place fields (CA1, 70 individual fields on the
central stem, 275 MPFs; subiculum, 45 individual fields on the
central stem, 136 MPFs), significant fractions conveyed neural
signals for the animal’s goal choice [C(t), CA1, n � 239, 69.3%,
binomial test against the chance level of p � 0.05, p 	 0.001;
subiculum, n � 85, 47.0%, p 	 0.001], its outcome [i.e., reward;
R(t), CA1, n � 77, 22.3%, p 	 0.001; subiculum, n � 33, 18.2%,
p 	 0.001], or their interaction [X(t), CA1, n � 94, 27.2%, p 	
0.001; subiculum, n � 45, 24.9%, p 	 0.001] in the current trial

Figure 3. Behavioral performance. A, An example of the animal’s choice behavior in a single behavioral session. Tick marks denote trial-by-trial choices of the animal (top, left choice; bottom,
right choice; long, rewarded trial; short, unrewarded trial). Block transitions are marked by vertical lines. Numbers on top indicate reward probabilities associated with left and right goal choices in
each block. The probability of choosing the left goal (PL) is plotted (moving average of 10 trials) across four blocks of trials (gray line). The black line shows the probability of choosing the left goal
predicted by the RL model. B, The relationship between log choice ratio (ordinate) and log reinforcement ratio (abscissa). Steady-state behavioral data (last 20 trials in each block) were fit to the
logarithmic form of the generalized matching law (solid line) for each animal. Each data point represents one block of trials. There was a significant positive relationship between log choice ratio and
log reinforcement ratio in all animals ( p 	0.001 in all animals). C, Regression coefficients from a logistic regression model showing the effects of past rewards (up to 10 trials) on the animal’s current
goal choice (error bars indicate SEs of coefficient estimates). All animals tended to make the same choice that was rewarded in recent trials, as indicated by positive coefficients. D, Distributions of
normalized negative log likelihood of the RL model (orange circles, right y-axis) and the model’s prediction of the animal’s actual choices (percentage correct; gray circles, left y-axis) in individual
sessions are shown for the animals used for CA1 and subicular recordings. Open circles denote individual sessions, and red filled circles indicate the session shown in A. Black filled circles and error
bars represent the mean and SEM. E–G, Mean percentages of choosing the goal with the higher reward probability (E) and using win–stay (F ) or lose–switch (G) strategies for the animals used for
CA1 and subicular recordings. H, I, Choice bias (percentage of the choice for a preferential goal in a given session; H ) and mean trial durations (I ) for the animals used for CA1 and subicular recordings.
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(Eq. 10; Fig. 5A,B). Also, significant fractions conveyed neural sig-
nals for the animal’s goal choice in the previous trial [C(t � 1), CA1,
n � 100, 29.0%, p 	 0.001; subiculum, n � 37, 20.4%, p 	 0.001], its
outcome [R(t � 1), CA1, n � 46, 13.3%, p 	 0.001; subiculum, n �
23, 12.7%, p 	 0.001], or their interaction [X(t � 1), CA1, n � 29,

8.4%, p � 0.004; subiculum, n � 17, 9.4%, p � 0.009; Eq. 10; Fig.
5C]. Similar results were obtained when the data were analyzed after
excluding SWR periods (Table 2), during which sequential reactiva-
tion was observed (Carr et al., 2011), indicating that neural signals
for the previous choice and its outcome did not result from sequen-
tial reactivation occurring during sleep or immobile states. Of those
CA1 MPFs encoding choice signals (n � 230), 119 and 111 fired at
higher rates at the ipsilateral and contralateral sides to the recorded
hemisphere, respectively, which was not significantly different from
the even split (�2 test, p � 0.598). Similarly, of those subicular MPFs
encoding choice signals (n�81), 43 and 38 fired at higher rates at the
ipsilateral and contralateral sides of the recorded hemisphere, re-
spectively, which was also not significantly different from the even
split (�2 test, p � 0.579).

In our task, the arrival of the animal at either goal triggered an
auditory tone signaling the availability of reward for 1 s (CS pe-

Figure 4. Place fields on linearized maze. A, Determination of an MPF. After determining place fields for each neuron on the linearized maze, neural data within each place field on either side of
the maze (approach, goal and return stages) were merged with those in the corresponding bins on the opposite side of the maze for further analysis, whereas place fields on the central stem were
analyzed individually. Appr, Approach stage. B, C, Spatial firing rate maps are shown for all CA1 (B) and subicular (C) putative pyramidal cells that had at least one place field (n�264 and 99 neurons,
respectively). The map for each neuron is in the same format as in A. Those neurons with multiple place fields are indicated by tick marks on the right. Red indicates maximum firing rate that is
different for each neuron (CA1, 14.02 � 10.04 Hz, mean � SD; range, 3.00 –53.05 Hz; subiculum, 12.65 � 8.06 Hz, 3.11– 41.82 Hz), and dark blue indicates no firing. The firing rate maps were
sorted according to the relative locations of the first place fields. The gray histogram (B, C) shows the mean normalized firing rate of all neurons shown in each set of maps.

Table 1. Spatial firing characteristics of CA1 and subicular neurons

CA1 Subiculum p value

Number of place fields 1.13 � 0.04 2.02 � 0.12 	0.001
Place field size (pixels) 9.23 � 0.21 11.62 � 0.69 	0.001
Infield firing rate (Hz) 5.68 � 0.28 4.94 � 0.36 0.466
Outfield firing rate (Hz) 0.71 � 0.04 1.43 � 0.08 	0.001
Infield/outfield firing ratio 12.68 � 0.84 4.13 � 0.32 	0.001
Spatial information content (bits/spike) 4.32 � 0.21 3.05 � 0.20 	0.001

Spatial firing of CA1 and subicular putative pyramidal cells was compared using various indices (mean � SEM). The
last column shows results of statistical comparisons between CA1 and subiculum (Wilcoxon rank-sum test).
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riod) before the actual reward was delivered (reward period), so
that the onset of the CS period corresponds to the beginning of
the goal stage (Fig. 1A). We therefore examined neuronal activity
related to the current choice outcome [R(t)] separately for the CS
and reward period (first 1 s each). For the analysis of the reward
period, those trials in which its duration was 	1 s (20.2% of the
total trials) were excluded. Of all MPFs whose centers were lo-
cated within the goal stage (CA1, n � 84; subiculum, n � 40; Fig.
4), substantial fractions conveyed significant choice outcome sig-
nals during the CS period (CA1, n � 21, 25.0%, binomial test, p 	
0.001; subiculum, n � 14, 35.0%, p 	 0.001), indicating that CA1
and subicular neurons responded significantly to the choice out-
come even when it was signaled by a CS before the actual reward
delivery (Fig. 5A). Overlapping, but different groups of cells
showed significant responses to the choice outcome during the

first 1 s of the reward period (CA1, n � 37,
44.0%, p 	 0.001; subiculum, n � 17,
42.5%, p 	 0.001; Fig. 5B). There was a
significant tendency for the neurons en-
coding choice outcome during the CS pe-
riod to encode choice outcome during the
first 1 s of the reward period as well in CA1
(� 2 test, p 	 0.001), but not in the subic-
ulum (p � 0.481). Consistent with the
previous findings in the striatum (Roit-
man et al., 2005; Ito and Doya, 2009; Kim
et al. 2009), there was a significant ten-
dency for choice outcome-encoding CA1
neurons to decrease their activity in re-
warded trials. During the CS period, 7 and
14 CA1 neurons showed significantly
higher and lower activity in rewarded tri-
als, respectively, and this difference was
not significant (� 2 test, p � 0.127). In
contrast, during the first 1 s of the reward
period, the numbers of CA1 neurons with
significantly higher and lower activity in
the rewarded trials were 6 and 31, respec-
tively, and this difference was statistically
significant (p 	 0.001). The neurons in
the subiculum did not show a significant
tendency to increase or decrease their ac-
tivity in either time period (activity in-
creasing vs decreasing neurons, CS
period, 8 and 6, respectively; p � 0.593;
first 1 s of the reward period, 8 and 9, re-
spectively; p � 0.808).

Neural activity related to action value
For the analysis of value-related neural ac-
tivity, we first examined whether the re-
corded neurons significantly modulated
their activity according to the action value
for the leftward or rightward goal choice
[QL(t) and QR(t), respectively] before the
animal’s goal choice. Of all place fields
whose centers were located within the stem
stage (CA1, n � 70; subiculum, n � 45; Fig.
4), which approximately corresponds to the
time period before the animal revealed its
goal choice behaviorally, a significant frac-
tion modulated their activity according to
at least one action value [QL(t) or QR(t);

p 	 0.025; � � 0.05 was corrected for multiple comparisons; Eq.
11] in CA1 (n � 10, 14.3%, binomial test, p � 0.003; Fig. 6A), but
not in the subiculum (n � 4, 8.9%, p � 0.187), although this
difference was not statistically significant (� 2 test, p � 0.388).
There was no significant tendency for action value-encoding CA1
neurons to increase or decrease their firing rates according to
action value (activity increasing vs decreasing neurons, 8 and 2,
respectively; Fisher’s exact test, p � 0.109) or to preferentially
encode action value of the goal choice ipsilateral or contralateral
to the recorded hemisphere (ipsilateral vs contralateral action
value, 5 and 5, respectively; Fisher’s exact test, p � 1.000). Similar
results were obtained when the same analysis was repeated using
neural data within a fixed time window regardless of place-
specific firing. Of all putative pyramidal cells with mean firing
rate �1 Hz during the last 1 s of the delay period (81 CA1 and 70

Figure 5. Neuronal activity related to the animal’s goal choice and its outcome in the current and previous trials. A–C, Example
neurons that modulated their activity according to the combination of the animal’s goal choice and its outcome in the current (A,
CS period; B, reward period; CA1 neurons) or previous trial (C, subicular neuron). Left, A spatial spike raster plot and trial type-
specific spatial firing rate maps along with overall occupancy time (gray histogram) for each neuron (neural activity in the spatial
domain). Right, A spike raster plot and trial type-specific spike density functions (computed using a Gaussian kernel with 
� 100
ms) for the same neuron (neural activity in the temporal domain). Trials were grouped according to the animal’s goal choice (L, left
goal; R, right goal) and its outcome (�, rewarded; �, unrewarded) in the current (A, B) or previous (C) trial. Appr, Approach.
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subicular neurons; 2 s delay was imposed on the central stem in
every trial), a significant fraction modulated their activity accord-
ing to at least one action value in CA1 (n � 17, 21.0%, binomial
test, p 	 0.001), but not in the subiculum (n � 6, 8.6%, p �
0.137), and this difference was statistically significant (� 2 test,
p � 0.034). Again, there was no significant tendency for action
value-encoding CA1 neurons to increase or decrease their firing
rates according to action value (activity increasing vs decreasing
neurons, 12 and 5, respectively; � 2 test, p � 0.090) or to encode
action value of the goal choice ipsilateral or contralateral to the
recorded hemisphere (ipsilateral vs contralateral action value, 9
and 8, respectively; p � 0.808).

Because the hippocampal formation has been implicated in
processing goal conflict (Gray and McNaughton, 2000), we ex-
amined whether CA1 and subicular neurons modulated their
activity according to the magnitude of value difference between
the two options [�
Q(t)� � �QL(t) � QR(t)�; Eq. 14]. Of all place
fields located within the stem stage (CA1, n � 70; subiculum, n �
45), a significant fraction modulated their activity according to
�
Q(t)� in CA1 (n � 8, 11.4%, binomial test, p � 0.023), but not
in the subiculum (n � 1, 2.3%, p � 0.901), and this difference
between CA1 and subiculum was not significant (Fisher’s exact
test, p � 0.088). Also, of all putative pyramidal cells with mean
firing rate �1 Hz during the last 1 s of the delay period (81 CA1
and 70 subicular neurons), significant fractions modulated their
activity according to �
Q(t)� in CA1 (n � 12, 14.8%, p 	 0.001) as
well as the subiculum (n � 8, 11.4%, p � 0.023), which were not
significantly different from each other (� 2 test, p � 0.540). These
results are consistent with a theory postulating a prominent role
of the hippocampal formation in processing goal conflict (Gray
and McNaughton, 2000).

Convergence of choice, outcome, and chosen value signals
in CA1
We then examined whether neural signals necessary to evaluate
the choice outcome, namely, neural signals for the animal’s goal
choice, its outcome, and chosen value [Qc(t), the value of chosen
action in a given trial], converged when the choice outcome was
revealed at the goal. Of 84 CA1 and 40 subicular MPFs whose
centers were located within the goal stage, significant fractions
modulated their activity according to the animal’s current goal
choice (Eq. 12; CA1, n � 73, 86.9%, binomial test, p 	 0.001;
subiculum, n � 21, 52.5%, p 	 0.001), its outcome (CA1, n � 36,
42.9%, p 	 0.001; subiculum, n � 14, 35.0%, p 	 0.001), or
chosen value (CA1, n � 29, 34.5%, p 	 0.001; subiculum, n � 6,
15.0%, p � 0.014; Fig. 6B). There was no significant tendency for
chosen value-encoding neurons to increase (n � 15 and 4 for
CA1 and subiculum, respectively) or decrease (n � 14 and 2,
respectively) their firing rates according to chosen value (Fisher’s
exact test, p � 1.000 and 0.688, respectively). Although all three
signals were significant in both brain structures, the signals for
the animal’s goal choice and chosen value were significantly
stronger in CA1 than in the subiculum (� 2 test, p 	 0.001 and p �
0.024, respectively). Pairwise analyses of contingency tables re-
vealed a significant tendency for current choice-encoding CA1
neurons to additionally encode current choice outcome and cho-
sen value more frequently than expected when those signals are
independently combined (Fisher’s exact test, p � 0.020 and
0.013, respectively; all other comparisons, p � 0.05).

Previous studies in the frontal cortex and striatum have shown
that these three types of neural signals temporally overlap imme-
diately (within �1 s) after the outcome of the animal’s goal
choice is revealed (Kim et al., 2009; Sul et al., 2010, 2011). We

Table 2. Neural signals for the animal’s goal choice and its outcome in the current and previous trial outside SWR events

C(t) R(t) X(t) C(t � 1) R(t � 1) X(t � 1)

CA1
Original data 239* (69.3%) 77* (22.3%) 94* (27.2%) 100* (29.0%) 46* (13.3%) 29* (8.4%)
SWR excluded 239* (69.3%) 75* (21.7%) 94* (27.2%) 104* (30.1%) 46* (13.3%) 27* (7.8%)

Subiculum
Original data 85* (47.0%) 33* (18.2%) 45* (24.9%) 37* (20.4%) 23* (12.7%) 17* (9.4%)
SWR excluded 88* (48.6%) 31* (17.1%) 44* (24.3%) 36* (19.9%) 23* (12.7%) 17* (9.4%)

Shown are the numbers (and percentages) of place fields that significantly modulated their activity according to the animal’s goal choice, its outcome, or their interaction in the current and previous trials. Total 345 CA1 place fields (70
individual fields on the central stem and 275 MPFs) and 181 subicular place fields (45 individual fields on the central stem and 136 MPFs) were analyzed. The results of the original analysis are also shown for comparison.

*p 	 0.05 (above-chance level; binomial test).

Figure 6. Value-related neuronal activity. A, An example CA1 neuron encoding the action value for the leftward choice [QL(t)] on the central stem. B, An example CA1 neuron encoding chosen
value [Qc(t)] at the goal. A spatial spike raster plot and spatial firing rate maps are shown for each neuron in the same format as in Figure 3. Trials were grouped into quartiles of action or chosen value
(0 –1; steps of 0.25) as indicated by different colors. Appr, Approach.
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therefore examined temporal profiles of these neural signals
around the time of CS onset using the same sets of neurons (84
CA1 and 40 subicular neurons with MPFs in the goal stage; Fig.
7A). Neural signals for the animal’s goal choice were strong after
the onset of the approach stage and throughout the goal stage.
Chosen value signals began to rise �1 s before the CS onset in
CA1, indicating that expected reward signals emerged in CA1
before the choice outcome was revealed. The chosen value signals
further increased during the CS period and then subsided grad-
ually during the reward period, and choice outcome signals arose

rapidly after the CS onset, so that neural
signals for the animal’s goal choice, its
outcome, and chosen value coexisted dur-
ing the CS and early reward period in CA1
(Fig. 7A).

Compared to CA1, chosen value sig-
nals were substantially weaker in the
subiculum (Fig. 7A). Analyzing the neural
data around the CS onset (�1 s from the
CS onset; Fig. 7A), we found that the frac-
tion of neurons conveying chosen value
signals was significant in CA1 (n � 28 of
84, 33.3%, binomial test, p 	 0.001), but
not in the subiculum (n � 3 of 40, 7.5%, p
� 0.323; Eq. 12), and this difference was
statistically significant (� 2 test, p �
0.002). Current goal choice signals were
also significantly weaker in the subiculum
than in CA1 (45.0 and 70.2%, respective-
ly; p � 0.007). Similar results were ob-
tained when the neurons were selected
based on their mean discharge rates
around the time of CS onset rather than
place-specific firing. When all putative
pyramidal neurons with mean firing rates
�1 Hz during the 2 s period centered
around the CS onset (141 CA1 and 84
subicular neurons) were analyzed, a sig-
nificantly larger fraction of CA1 neurons
conveyed chosen value signals than
subicular neurons (29.8 vs 11.9%, re-
spectively; � 2 test, p � 0.002). The dif-
ference in the proportion of neurons
encoding current choice signals in CA1
and subiculum (76.6 vs 36.9%, respec-
tively) was also significant ( p 	 0.001).
Thus, it is unlikely that the difference in
the strength of chosen value signals
arose from different discharge charac-
teristics of CA1 and subicular place
fields.

The above results indicate that all the
signals necessary to evaluate the outcome
of the animal’s choice in reference to pre-
vious experiences converged in CA1 im-
mediately after the outcome of a goal
choice was revealed, whereas chosen value
signals were significantly weaker in the
subiculum. We performed the following
additional analyses to exclude several al-
ternative explanations. First, we analyzed
individual place fields in the goal stage
separately without merging them with the

neural data in the corresponding bins at the opposite goal (93
CA1 and 60 subicular place fields) using the regression model
without the choice term (Eq. 13). The number of analyzed trials
per session was approximately halved in this analysis, so the sta-
tistical power was reduced. As a result, the fractions of significant
place fields encoding choice outcome or chosen value were lower
and more variable compared to the original analysis, especially
for the subiculum for which the number of analyzed place fields
was smaller. Nevertheless, the temporal profiles of choice out-
come and chosen value signals (Fig. 7B) were, overall, similar to

Figure 7. Convergence of neural signals in CA1 (left) and subiculum (right) related to the animal’s choice, its outcome and
chosen value. A, Temporal profiles of neural signals for the animal’s goal choice [C(t)], its outcome [R(t)], and chosen value [Qc(t)]
are shown around the time of CS onset (time 0) for those neurons with MPFs in the goal stage. The graphs show fractions of MPFs
that significantly modulated their activity according to a given variable in a 1 s moving window advanced in 0.1 s time steps. Values
above the shaded areas are significantly higher than the chance level (binomial test, � � 0.05). B, Results from the analysis of
individual place fields. C, Results from the regression analysis including the animal’s head direction. D, Results from the analysis
that included neurons with low firing rates and low burst firing.
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those obtained with the original analysis (Fig. 7A). Therefore, the
difference between CA1 and subiculum is unlikely due to the use
of MPFs in the analysis. Second, we examined the possibility that
trial-by-trial variations in the animal’s head direction contrib-
uted to the observed chosen value signals in CA1. For this, we
added the regressors related to the animal’s head direction (see
Materials and Methods) and reanalyzed activity of those neurons
with MPFs in the goal stage (CA1, 84; subiculum, 40) as in the
original analysis. Adding the animal’s head direction to the re-
gression model (Eq. 12) substantially reduced the proportion of
neurons displaying the statistically significant effects of the ani-
mal’s choice on their activity (before CS onset; Fig. 7C). This was
expected, since these two variables are highly correlated. In con-
trast, the proportion of neurons with value signals was largely
unaffected. This was also the case for the other regression analy-
ses; adding head direction had little effect on the results except for
weakening current choice signals (Table 3). Third, to test the
possibility that our classification of putative pyramidal cells (low-
rate, high-bursting units; Fig. 2) might have biased the results, we
included those neurons with low firing rates and small burst in-
dex values (7 CA1 and 13 subicular neurons that had MPFs in the
goal stage) in the analysis. This analysis also yielded similar results
(Fig. 7D). Collectively, these additional analyses corroborated the
finding that neural signals for the animal’s goal choice, its out-
come, and chosen value coexisted in CA1 immediately after the
choice outcome was revealed, whereas chosen value signals were
substantially weaker in the subiculum.

Reward prediction error and updated chosen value
We showed previously that neural signals for chosen value and
choice outcome are combined differently across neurons in var-
ious regions of the corticobasal ganglia loop to compute RPE or
update chosen value immediately (within �1 s) after the choice
outcome was revealed (Kim et al., 2009; Sul et al., 2010, 2011).
These results provided evidence for active involvement of multi-
ple brain structures in the evaluation of choice outcomes in ref-
erence to previous experiences. Thus, if CA1 is actively involved
in the evaluation of choice outcomes rather than simply trans-
mitting results of the evaluation performed elsewhere, both RPE
and updated value signals are expected to be found in CA1. We
therefore examined neuronal activity related to RPE and updated
chosen value [Qc(t � 1)] during the CS period (1 s) for all CA1
neurons with an MPF in the goal stage (n � 84). Because RPE and
updated chosen value are computed by the difference between
and weighted sum of choice outcome and chosen value, respec-
tively [i.e., RPE � R(t) � Qc(t) and Qc(t � 1) � (1 � �)Qc(t) �
�R(t), where � is the learning rate, and 0 	 � 	 1] (Sutton and
Barto, 1998), activity of those neurons with the opposite signs of
the coefficients for chosen value and choice outcome would be

modulated by RPE. Conversely, activity of those with the same
signs of their coefficients is expected to modulate their activity
according to updated chosen value. Accordingly, we examined
the distribution of signs of the coefficients for chosen value and
choice outcome, and tested whether neuronal activity is better
explained by the model containing RPE (Eq. 15) or updated cho-
sen value (Eq. 16). Figure 8 shows the relationship between the
standardized regression coefficients for choice outcome and cho-
sen value. There were 42 CA1 neurons encoding choice outcome
and/or chosen value during the CS period (colored circles). As
expected, activity was better explained by the model containing
updated chosen value (Fig. 8, blue) in 27 among 29 neurons that
showed the same signs in their coefficients for choice outcome
and chosen value. In contrast, activity was usually better ex-
plained by the model containing RPE (Fig. 8, red) when the neu-
rons had the opposite signs for these two coefficients (10 of 13
neurons). These results suggest that choice outcome and chosen
value signals are combined to compute RPE as well as to update
chosen value in CA1.

Discussion
We examined value-related neuronal activity in the dorsal CA1
and dorsal subiculum in rats performing a dynamic foraging task.
Both CA1 and subiculum conveyed conjunctive neural signals for
the animal’s goal choice and its outcome in the current as well as
previous trials, indicating that they signaled consequences of spe-

Table 3. Results obtained with the regression analyses including the animal’s head direction

Equation 10 (all stages) Equation 11
(stem stage)
QL(t) or QR(t)

Equation 12 (goal stage)

C(t) R(t) X(t) C(t � 1) R(t � 1) X(t � 1) C(t) R(t) Qc(t)

CA1
Original data 239* (69.3%) 77* (22.3%) 94* (27.2%) 100* (29.0%) 46* (13.3%) 29* (8.4%) 10* (14.3%) 73* (86.9%) 36* (42.9%) 29* (34.5%)
� Head direction 189* (54.8%) 70* (20.3%) 97* (28.1%) 96* (27.8%) 44* (12.8%) 28* (8.1%) 10* (14.3%) 61* (72.6%) 35* (41.7%) 31* (36.9%)

Subiculum
Original data 85* (47.0%) 33* (18.2%) 45* (24.9%) 37* (20.4%) 23* (12.7%) 17* (9.4%) 4 (8.9%) 21* (52.5%) 14* (35.0%) 6* (15.0%)
� Head direction 70* (38.7%) 32* (17.7%) 39* (21.5%) 36* (19.9%) 22* (12.2%) 19* (10.5%) 3 (6.7%) 10* (25.0%) 12* (30.0%) 6* (15.0%)

We repeated the same regression analyses (Eqs. 10 –12), but with the horizontal and vertical components of mean head direction included in the regression models. The table shows the numbers (and percentages) of place fields (individual
place fields on the central stem and MPFs for the rest of the behavioral stages) that significantly modulated their activity according to the variables of interest in each regression model. The results of the original analysis are also shown for
comparison.

*p 	 0.05 (above-chance level; binomial test).

Figure 8. Relationship between neural signals related to chosen value and choice outcome
in CA1. Neuronal activity during the CS period (1 s) was analyzed for all CA1 neurons with an MPF
in the goal stage (n � 84). The graphs show standardized regression coefficients (SRCs) for
choice outcome (abscissa) and chosen value (ordinate) in the current trial. Saturated colors
indicate those neurons encoding both choice outcome and chosen value, and light colors indi-
cate those that encoded either choice outcome or chosen value during the CS period (Eq. 12).
The remaining neurons are indicated in gray. Red and blue symbols indicate those neurons
whose activity was better explained (according to R 2) by the model containing RPE (Eq. 15) or
updated chosen value [Qc(t � 1); Eq. 16], respectively.
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cific goal choices over multiple trials (cf. Eichenbaum et al.,
1987). Thus, ingredient neural signals to compute values based
on past experiences were available in both structures. On the
other hand, whereas CA1 conveyed robust signals necessary to
evaluate the outcome of an experienced event, value-related sig-
nals were significantly weaker in the subiculum.

Value signals in the hippocampus
So far, few studies have investigated hippocampal neural activity
related to quantitative aspects of reward. Using probabilistic re-
ward delivery and RL model-based analysis, we were able to dem-
onstrate neural signals related to action value before the animal’s
goal choice (on the central stem) and chosen value after the
choice outcome was revealed (at the goal) in CA1. Importantly,
significant chosen value signals were detected with the choice
outcome (i.e., reward) included in the regression model (Eq. 12),
indicating that they are different from signals merely related to
reward. Moreover, value signals were regionally specific (largely
absent in the subiculum) and robust, as confirmed by the analyses
in both spatial and temporal domains, by using different methods
to define place fields and also by controlling for the effects of
potential confounding behavioral variables, making it unlikely
that they merely reflected spurious correlation of neural activity
with some other variables. Finally, strengths of action value and
chosen value signals found in CA1 were comparable to those
found in other brain structures well known to be involved in
value processing (striatum and frontal cortex) (Kim et al., 2009;
Sul et al., 2010, 2011). These results provide converging evidence
for significant value signals in CA1.

CA1 neurons carried significant signals related to action val-
ues before the animal revealed its choice behaviorally, indicating
that the information on the expected outcomes from potential
choices was available in CA1. Moreover, chosen value signals
arose in CA1 as the animal was approaching to the chosen goal,
and they temporally overlapped with the signals related to the
animal’s goal choice and its outcome after the choice outcome
was revealed. Therefore, all the signals necessary to evaluate the
outcome of an experienced event converged in CA1, and they
were combined differently to compute RPE as well as to update
the value of chosen action. These findings suggest that CA1 might
be actively involved in evaluating event outcomes and keeping
track of their expected values rather than passively propagating
value signals computed elsewhere. Our results are consistent with
the findings of brain imaging studies in humans. Reinforcement
signals were found in widespread areas of the human brain in-
cluding the hippocampus during competitive decision-making
tasks (Vickery et al., 2011). Also, successful recollection of previ-
ously experienced visual stimuli was correlated with blood oxy-
gen level-dependent (BOLD) signals in the hippocampus and the
brain areas known to encode values (ventromedial prefrontal
cortex and ventral striatum), suggesting that stimulus-specific
reward values are remembered together with the associated stim-
uli (Kuhl et al., 2010). Moreover, BOLD signals in the hippocam-
pus were correlated with state value (reward prediction in a
Markov decision task) (Tanaka et al., 2004) as well as prediction
error that was computed with an RL model in probabilistic learn-
ing tasks (Dickerson et al., 2011; Foerde and Shohamy, 2011).
These and our results raise the possibility that valuation might be
an integral part of hippocampal neural processing.

Role of hippocampus in value-based decision making
Value signals found in the hippocampus were qualitatively simi-
lar to those identified previously in other brain areas such as the

prefrontal cortex and striatum (Kim et al., 2009; Sul et al., 2010),
which suggests largely distributed and potentially cooperative
computation of values across these brain structures. However, we
cannot rule out the possibility that value-related hippocampal
neural activity might merely reflect the outputs of interconnected
brain regions. Therefore, our results should be interpreted cau-
tiously in formulating the role of the hippocampus in value pro-
cessing. Nevertheless, our finding of robust value signals in CA1
is also consistent with the possibility that the hippocampus is
actively involved in representing action values in a dynamic en-
vironment. There also exists evidence that patients with bilateral
hippocampal damages are impaired in making decisions adap-
tively (Gutbrod et al., 2006; Gupta et al., 2009). Thus, although
relatively little attention has been paid to the hippocampus in
formulating neural mechanisms underlying value-based decision
making so far, the hippocampus might be part of core neural
systems in charge of value-based decision making. For example,
the hippocampus might play an important role in associating
value information with event information so that the retrieval of
a memory for a previously experienced event will automatically
entail the retrieval of its associated value (cf. Kuhl et al., 2010).
Also, the hippocampus might be involved in correctly updating
values when the delay between an action and its outcome is too
long to be bridged by short-term memory [cf. temporal credit
assignment problem (Sutton and Barto, 1998)]. Finally, the hip-
pocampus might play an important role in model-based RL, in
which values can be updated according to the decision-maker’s
knowledge or model of the environment (Sutton and Barto, 1998;
Daw et al., 2005; Lee et al., 2012). The hippocampus might con-
tribute to model-based RL through its role in encoding episodic
and semantic memories (i.e., knowledge on the surrounding
world) and also through its role in simulating the possible out-
comes of future actions (Hassabis and Maguire, 2007; Johnson
and Redish, 2007; Schacter et al., 2007; Luhmann et al., 2008;
Buckner, 2010; Peters and Büchel, 2010; Benoit et al., 2011).

Role of CA1 in integrating multiple elements of
episodic memory
CA1 neurons conveyed the information about the consequence
of a specific goal choice (“what happened where”) in our task,
which is consistent with previous studies demonstrating CA1
neuronal activity related to the conjunction of what and where
information (for review, see Shapiro et al., 2006; O’Keefe, 2007).
Recent studies also found CA1 neuronal activity related to the
“when” component of experienced events (Itskov et al., 2011;
MacDonald et al., 2011; Naya and Suzuki, 2011), suggesting that
CA1 neurons might encode all the elements of episodic (Tulving,
2002) or episodic-like (Clayton and Dickinson, 1998) memory
(what, where, and when). Moreover, rewards (see Introduction,
above) and aversive stimuli (Segal et al., 1972; Berger et al., 1976,
1983; McEchron and Disterhoft, 1997; Múnera et al., 2001; Moita
et al., 2003, 2004) are among the nonspatial factors that have been
shown to modulate CA1 neuronal activity, suggesting that affec-
tive significance might also influence CA1 activity. Our results
further show that CA1 neurons carry quantitative signals for val-
ues (how good or bad) estimated from the animal’s choice and
reward history along with factual information about the current
event. Together, these results suggest that CA1 might be a place
where all the elements of episodic memory (what, where, and
when, as well as affective significance) are integrated.
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Role of subiculum in encoding episodic memory
CA1 and subiculum are two major output structures of the hip-
pocampal formation (Witter, 2006), but precise functional roles
of the two structures are not well understood. Previous physio-
logical studies have found differences between CA1 and subicular
neuronal activity related to spatial information coding (Barnes et
al., 1990; Sharp and Green, 1994; Sharp, 1997; Lever et al., 2009)
and short-term memory (Hampson and Deadwyler, 2003; Dead-
wyler and Hampson, 2004). Our results revealed an additional
difference between the dorsal CA1 and dorsal subiculum. Despite
strong monosynaptic projections from CA1, value signals were
only weakly encoded in the dorsal subiculum, suggesting that it
plays only a minor role in interpreting choice outcomes in the
context of the animal’s previous experience. Previous studies
have shown that activity of subicular neurons is strongly influ-
enced by physical boundaries of the surrounding environment.
When surrounding enclosure of a recording arena is changed
(from a cylinder to a square box, for example), subicular spatial
firing tends to be maintained relative to physical boundaries
(Sharp, 1997; Lever et al., 2009), whereas CA1 spatial firing typ-
ically remaps (Muller and Kubie, 1987). Anatomically, the subic-
ulum receives raw associative sensory inputs from perirhinal and
postrhinal cortices (Naber et al., 2000). These and our results
raise the possibility that the dorsal subiculum plays an important
role in transmitting factual information that is bound to the ex-
ternal world (what is out there and what happened), whereas CA1
serves a role of transforming factual information into subjec-
tive significance. It remains to be determined, however,
whether or not the subiculum is involved in the processing of
affective information other than subjective values of experi-
enced events. Currently, empirical studies on the functional
role of the subiculum are rare compared to those related to
CA1. Clearly, additional studies are needed to reveal specific
roles played by the subiculum.
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