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Abstract:
Objective Contrast agents used for radiological examinations are an important cause of acute kidney injury

(AKI). We developed and validated a machine learning and clinical scoring prediction model to stratify the

risk of contrast-induced nephropathy, considering the limitations of current classical and machine learning

models.

Methods This retrospective study included 38,481 percutaneous coronary intervention cases from 23,703

patients in a tertiary hospital. We divided the cases into development and internal test sets (8:2). Using the

development set, we trained a gradient boosting machine prediction model (complex model). We then devel-

oped a simple model using seven variables based on variable importance. We validated the performance of

the models using an internal test set and tested them externally in two other hospitals.

Results The complex model had the best area under the receiver operating characteristic (AUROC) curve at

0.885 [95% confidence interval (CI) 0.876-0.894] in the internal test set and 0.837 (95% CI 0.819-0.854) and

0.850 (95% CI 0.781-0.918) in two different external validation sets. The simple model showed an AUROC

of 0.795 (95% CI 0.781-0.808) in the internal test set and 0.766 (95% CI 0.744-0.789) and 0.782 (95% CI

0.687-0.877) in the two different external validation sets. This was higher than the value in the well-known

scoring system (Mehran criteria, AUROC=0.67). The seven precatheterization variables selected for the sim-

ple model were age, known chronic kidney disease, hematocrit, troponin I, blood urea nitrogen, base excess,

and N-terminal pro-brain natriuretic peptide. The simple model is available at http://52.78.230.235:8081/

Conclusions We developed an AKI prediction machine learning model with reliable performance. This can

aid in bedside clinical decision making.
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Introduction

Iodine contrast agents used for radiological examinations

are an important cause of acute kidney injury (AKI) in hos-

pitals (1). Contrast angiography is currently widely applied

for diagnostic and therapeutic purposes, and its use is in-

creasing. This has led to an increased risk of iatrogenic kid-

ney dysfunction due to exposure to contrast agents, a condi-

tion known as contrast-induced nephropathy (CIN). In a pre-

vious report, CIN accounted for 11% of hospital-acquired

kidney insufficiency cases and was the third-most common

cause of hospital-induced AKI (2). Coronary angiography

and percutaneous coronary intervention (PCI) are among the

most common causes of CIN (2). Although CIN is generally

reversible, active prevention and treatment are needed, as

CIN can lead to an extended hospital stay and an increased

occurrence of complications and mortality (3-5).

Multiple strategies have been successful in preventing

CIN, including fluid administration (6, 7), minimizing the

contrast dose (8), and using iso- and low-osmolar contrast

media (9, 10). Therefore, it is important to identify patients

who are likely to develop postinterventional CIN and subse-

quently initiate preventive strategies to preserve the kidney

function. As a result, certain risk prediction tools or risk

models have been reported as capable of predicting the inci-

dence of CIN. The Mehran score is the most widely used

prediction method for CIN in patients hospitalized for acute

coronary syndrome who have undergone coronary angiogra-

phy (11). However, because the Mehran criteria use intrain-

tervention variables, such as contrast volume, there are limi-

tations in accurately predicting the preprocedural risk. Al-

though CIN prediction models using other variables have re-

cently been developed (12, 13), they have been limited to

classical statistical techniques. The adoption of electronic

medical record (EMR) technology has led to the notable ac-

cumulation of medical data. Recent machine learning tech-

niques have been employed more frequently than classical

statistical methods for identifying reliable predictive patterns

in EMR and improving predictive performance (14-16). Fur-

thermore, machine learning techniques have been used to

predict CIN after PCI (17-19). Although machine learning-

based predictive models have been shown to have better pre-

dictive capabilities, they typically use large numbers of vari-

ables, which makes their use in actual clinical practice diffi-

cult.

The present study developed a CIN prediction machine

learning model with high accuracy using only an applicable

number of variables.

Materials and Methods

Data preparation

From January 1994 to January 2021, we extracted all PCI

cases at tertiary education hospitals regardless of whether

they were inpatients or outpatients [Ajou University Medical

Center (AUMC), Suwon, South Korea], and the intervention

date was set as the index date. We divided the AUMC data

into development and internal test cohorts (8:2) on a patient

basis. We excluded patients who had a history of end-stage

renal disease or hemodialysis and a history of PCI within

one year prior to the index date and those who did not have

a medical record for at least one year before the PCI. For

external validation of the model, we extracted patient data

from March 2010 to December 2019 from two hospitals - a

government-certified cardiology hospital [Bucheon Sejong

Hospital (BSH), Bucheon, South Korea] and a community-

based general hospital [Incheon Sejong Hospital (ISH),

Incheon, South Korea] - by applying the same inclusion and

exclusion criteria.

We extracted data regarding 23,703 patients and 38,481

PCI procedures from AUMC, 9,364 patients and 433 cases

from BSH, and 874 patients and 27 cases from ISH.

We extracted the patients’ sex, age, drug, diagnosis, and

laboratory records from electronic medical records. The age

covariate was divided into five-years groups; drug covariates

were grouped by the drug ingredient, regardless of drug

brand; and use in the past year was considered as a binary

variable. As a disease covariate, we used whether or not a

patient had been diagnosed with a specific International

Classification of Diseases code in the last year. For labora-

tory records, based on whether the test value was above,

within, or below the normal range, the nearest laboratory

value was categorized and used as a variable. To avoid a

postintervention data gap due to data entry inconsistency in

hospitals, variables from the day of the procedure were re-

moved.

For the imputation of missing data, MissForest was

used (20). It imputes missing values using a random forest

trained on the observed values of a data matrix to predict

the missing values. It can be used to impute continuous and

categorical data.

The clinical outcome was the occurrence of AKI within

three days after PCI. AKI was judged to have occurred

when one of the following two conditions was satisfied

based on individual creatinine tests, according to the Kidney

Disease Improving Global Outcomes criteria: an individual

creatinine test result higher than the minimum creatinine test

value of the past 2 days by �0.3 mg/dL; or an increase in

creatinine �1.5× the average value of the past seven

days (21).

This study followed the Declaration of Helsinki and was

approved by the Institutional Review Board of Ajou Univer-

sity Medical Center (approval No. AJIRB-MED-MDB-21-

196). The requirement for informed patient consent was

waived. All data transformed into the common data model

were deidentified.

The database used in this study was standardized with the

observational medical outcomes partnership common data

model, which is an international clinical standardization sys-

tem maintained by the Observational Health Data Sciences
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and Informatics community (22).

Model development

A total of 11,092 diagnosis, prescription, and laboratory

variables were extracted from the EMR. We applied a total

of five machine learning algorithms: gradient boosting ma-

chine (GBM), random forest, lasso logistic regression, deci-

sion tree, and Adaboost (23-27). In addition, we constructed

a classical logistic regression model as a baseline to provide

a comparative benchmark for our machine learning algo-

rithm (28). We performed five-fold validation of the devel-

opment dataset for algorithm selection. The performance of

each algorithm was ranked according to the mean area under

the receiver operating characteristic (AUROC) curve of the

cross-validation set. A grid search was used for the optimal

hyperparameters for each algorithm. Additional details on

the hyperparameter selection are provided in Supplementary

material 1.

Based on variable importance, the top seven variables

were selected from the complex model. The Mehran criteria,

the most popular CIN prediction model, uses eight vari-

ables (29). Using machine learning algorithms, we attempted

to develop a higher-performance model with even fewer pre-

intervention variables. We then trained the machine learning

model using only the seven selected variables (simple

model). Finally, we validated the performance of the com-

plex and simple models using the internal test set and two

external validation sets.

After model development, we calculated feature impor-

tance by implementing the gain importance method and cre-

ated a feature importance plot. To validate the robustness of

the model, subgroup analyses were conducted for sex and

age. Sex was divided into “man” and “woman,” and age was

divided into 5 categories of <50, 50-60, 60-70, 70-80, and �
80 years.

Due to concerns about the different cohort data collection

periods for the model development hospitals and the exter-

nal validation hospitals, we developed a subanalysis model

that only used the time-synchronized data from the training

dataset (collected from 2010-2019) and validated it in the

validation dataset before comparing it to the main model.

As a subanalysis, we generated a balanced dataset by re-

sampling the 1:1 ratio of outcomes from the training dataset

and developed a machine learning model. We then compared

the model developed with the balanced dataset (balanced

model) and the model developed with the whole dataset

(original model).

Statistical analyses

To validate the performance of the machine learning

model, we compared the predictive probability of the ma-

chine learning model with the actual occurrence of AKI in

the test dataset. For this purpose, the AUROC and average

precision (AP) were calculated. The confidence interval of

the AUROC was calculated using the DeLong test (30).

We computed the optimal threshold using Youden-J statis-

tics for a detailed model performance evaluation. We plotted

a confusion matrix using the optimal threshold and calcu-

lated the recall, precision, J statistic, and F1 score for the in-

ternal and external validation datasets.

For baseline characteristics, we used the unpaired Stu-

dent’s t-test to compare and present the mean values and

standard deviations of the continuous variables. The cate-

gorical variables were described as percentages and com-

pared using the χ 2 test.

This study was designed using the patient-level prediction

R package version 4.0.5, and R 3.5.2 (R Foundation for Sta-

tistical Computing, Vienna, Austria) was used for the statisti-

cal analysis.

Results

Baseline characteristics of the patients

A flowchart of the patients is shown in Fig. 1. In total,

24,187 patients from AUMC underwent PCI during the

study period. A total of 484 patients were excluded owing to

the exclusion criteria or hemodialysis. A total of 23,703 pa-

tients and 38,481 cases were included in the study. CIN oc-

curred after 1,185 procedures (3.1%). In the external valida-

tion dataset from BSH, 9,364 patients underwent 11,105

PCI procedures, of whom 433 developed CIN (3.9%). In the

ISH dataset, 874 patients underwent 960 PCI procedures, of

whom 27 developed CIN (2.8%).

Detailed baseline characteristics of the study cohort are

presented in Table 1. We observed statistically significant

differences in the baseline characteristics between groups

with and without CIN. Chronic kidney disease (CKD) pa-

tients showed the largest difference, with only 2% being

noted in the group without CIN and 31.7% in the group

with CIN.

Model development

As a result of the algorithm selection, GBM showed the

best performance in 5-fold cross validation. The perform-

ance of each algorithm is summarized in Supplementary ma-

terial 2.

We applied the GBM algorithm to all extracted variables.

Seven variables were selected to produce a simple model

based on the variable importance of the complex model, in-

cluding the age, history of CKD, hematocrit result, troponin

I level, blood urea nitrogen (BUN) level, base excess, and

N-terminal pro-brain natriuretic peptide (NT-proBNP) level.

The feature importance plot is depicted in Supplementary

material 3.

Model performance

The performance of the models is illustrated in Fig. 2.

The complex model had the best AUROC at 0.885 [95%

confidence interval (CI) 0.876-0.894] and AP at 0.393. In

the external test, the AUROC was 0.837 (95% CI 0.819-

0.854) for an AP of 0.204 and 0.850 (95% CI 0.781-0.918)
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Figure　1.　Flow chart of participants. All coronary intervention cases in a tertiary teaching hospital 
between January 1994 and January 2021 (AUMC: Ajou University Medical Center, Suwon, South 
Korea). In total, 24,187 patients underwent PCI during the study period in AUMC. Patients who had 
a history of ESRD, HD, or PCI within one year prior to the index date and patients who did not have 
a medical record for at least one year before the coronary intervention were excluded. After exclu-
sion, 23,703 patients and 38,481 cases were included in the study. The AUMC data were divided into 
development and internal test cohorts (8:2) on a patient basis. ESRD: end-stage renal disease, HD: 
hemodialysis, PCI: percutaneous coronary intervention

Table　1.　Baseline Characteristics of Patients.

No CIN CIN p value

Total, cases (%) 37,296 (96.9) 1,185 (3.1)

Age, mean (SD) 62.4 (11.2) 66.4 (12.4) <0.001

Sex (male), n (%) 24,541 (65.8) 742 (62.6) 0.016

Heart valve disorder, n (%) 904 (2.4) 122 (10.3) <0.001

Type 2 DM, n (%) 6,567 (17.6) 345 (29.1) <0.001

Use of furosemide on the day of the coronary intervention, n (%) 2,171 (5.8) 507 (42.8) <0.001

Use of artificial respiration on the day of the coronary intervention, n (%) 294 (0.8) 158 (13.3) <0.001

Transfusion on the day of the coronary intervention, n (%) 380 (1.0) 190 (16.0) <0.001

Central venous catheter on the day of the coronary intervention, n (%) 323 (0.9) 127 (10.7) <0.001

ACE inhibitor or ARB, n (%) 5,774 (15.5) 291 (24.6) <0.001

NT-pro-BNP level >115 pg/mL, n (%) 1,363 (3.7) 281 (23.7) <0.001

Chronic kidney disease, n (%) 732 (2.0) 376 (31.7) <0.001

Baseline characteristics calculated from hospital patients were used in model development and internal validation (AUMC: Ajou 

University Medical Center).

Continuous variables were compared using Student’s t-test. Categorical variables were compared using the χ2test.
ACE: angiotensin-converting enzyme, ARB: angiotensin II receptor blocker, CIN: contrast-induced nephropathy, DM: diabetes 

mellitus, NT-proBNP: N-terminal pro-brain natriuretic peptide

for an AP of 0.231. The simple model showed an AUROC

of 0.795 (95% CI 0.781-0.808) and AP of 0.235 in the in-

ternal test and 0.766 (95% CI 0.744-0.789) for an AP of

0.127 and 0.782 (95% CI 0.687-0.877) for an AP of 0.158

for the BSH and ISH datasets. Otherwise, the baseline

model, which was developed with the classical logistic re-

gression algorithm, showed an AUROC of 0.652 (95% CI

0.615-0.689) and AP of 0.083. In the external test, the

AUROC was 0.673 (95% CI 0.612-0.735) with an AP of

0.093 and 0.671 (95% CI 0.65-0.693) with an AP of 0.1.

More model metrics, including the confusion matrix and J-

statistics, are detailed in Supplementary material 4. In addi-
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Figure　2.　Performance of models. Machine learning models with all extracted variables from elec-
tronic medical records (complex model) and by restricting the number of variables to seven (simple 
model) were developed. After development, the predictions were calculated from the model using an 
internal test set (AUMC: Ajou University Medical Center) and two external test sets (BSH: Bucheon 
Sejong Hospital, ISH: Incheon Sejong Hospital). Finally, an AUROC (area under the receiver operat-
ing characteristic) curve was illustrated for each model.

Table　2.　Subgroup Analysis.

AUMC BSH ISH

Complex model

Male 0.881 (0.870-0.893) 0.843 (0.819-0.868) 0.876 (0.819-0.932)

Female 0.892 (0.878-0.905) 0.822 (0.796-0.848) 0.818 (0.655-0.981)

Age < 50 0.886 (0.858-0.914) 0.899 (0.852-0.945) 0.972 (0.956-0.999)

50 ≤ Age < 60 0.894 (0.872-0.916) 0.836 (0.784-0.888) 0.957 (0.929-0.985)

60 ≤ Age < 70 0.902 (0.886-0.919) 0.87 (0.838-0.902) 0.892 (0.818-0.966)

70 ≤ Age < 80 0.847 (0.828-0.865) 0.797 (0.765-0.830) 0.618 (0.372-0.864)

80 ≤ Age 0.823 (0.792-0.853) 0.775 (0.723-0.828) 0.874 (0.749-0.999)

Simple model

Male 0.786 (0.769-0.803) 0.785 (0.755-0.814) 0.797 (0.682-0.912)

Female 0.809 (0.788-0.830) 0.738 (0.703-0.774) 0.759 (0.577-0.940)

Age < 50 0.777 (0.733-0.821) 0.766 (0.640-0.892) 0.992 (0.971-1.000)

50 ≤ Age < 60 0.792 (0.758-0.827) 0.752 (0.685-0.819) 0.856 (0.660-1.000)

60 ≤ Age < 70 0.804 (0.778-0.830) 0.784 (0.741-0.827) 0.815 (0.645-0.985)

70 ≤ Age < 80 0.769 (0.744-0.793) 0.717 (0.677-0.757) 0.524 (0.220-0.828)

80 ≤ Age 0.729 (0.689-0.769) 0.692 (0.633-0.752) 0.804 (0.666-0.943)

A machine learning model with all extracted variables from electronic medical records (complex 

model), and a simplified model developed by restricting the number of variables to seven (simple 

model). To validate the robustness of the developed models regardless of sex and age, the area under 

the receiver operating characteristic curve and 95% confidence interval in each subgroup were cal-

culated. Each calculation was performed using an internal test set (AUMC: Ajou University Medical 

Center) and two external test sets (BSH: Bucheon Sejong Hospital, ISH: Incheon Sejong Hospital).

tion, we publicly opened the simple model as a web appli-

cation (http://52.78.230.235:8081/).

In the subgroup analysis, the performance of the complex

model was >0.775, except for in the 70 to <80 years old

group for the ISH dataset. In addition, the performance of

the simple model was >0.692, except for in the 70 to <80

years old group for the ISH dataset. Detailed results of the

subgroup analysis for sex and age are presented in Table 2.

Detailed results of the subanalysis are depicted in Supple-

mentary material 5. In subanalyses of synchronizing the col-

lection time of hospitals, the model without synchronization

shows superior performance to the synchronized model.

In subanalyses with outcome balancing, the model with-

out outcome balancing surpasses the model developed on

the balanced dataset in internal and external validation. De-

tailed results of the subanalysis are depicted in Supplemen-
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tary material 6.

Discussion

We developed a machine learning model to predict AKI

in patients after PCI. The complex prediction model showed

an AUROC of 0.885 (95% CI 0.876-0.894) in the internal

test set and 0.837 (95% CI 0.819-0.854) and 0.850 (95% CI

0.781-0.918) in two different external validation sets. Based

on the complex model, we created an easy-to-use prediction

model. The seven variables selected for the simple model

were the age, history of CKD, hematocrit result, troponin I

level, BUN level, base excess, and NT-pro-BNP level. The

simple model showed an AUROC of 0.795 in the internal

test set and 0.766 (95% CI 0.744-0.789) and 0.782 (95% CI

0.687-0.877) in the two different external validation sets. In

addition, we publicly opened up the simple model as a web

application for convenient application in clinical practice.

Predicting CIN has important clinical implications. The

Mehran score is the most widely used prediction method for

CIN in patients undergoing coronary angiography (11).

However, the score includes intraprocedural variables, such

as contrast medium volume, which limits the preprocedural

risk evaluation (11). To overcome these limitations, Tsai et

al. (12) proposed a risk prediction model that used only pre-

procedural variables; however, the prediction performance

was insufficient, with an AUROC of 0.72.

Recently, high-performance predictive models based on

machine learning have been developed. However, their ap-

plication in clinical practice is difficult, as numerous vari-

ables are required for prediction (17-19, 31). For applicabil-

ity, a high-performance model using a small number of vari-

ables was needed.

In our study, we developed a complex prediction model

initially created with 11,092 variables extracted from EMRs.

Subsequently, we distilled the complex model using a data-

driven method and finally developed a simple model. The

simple model can predict AKI by using 7 variables, which is

fewer than the number of variables in the Mehran score (8

variables) or Tsai’s model (11 variables), but the risk predic-

tion yielded an AUROC of 0.795, which is superior to that

of the Mehran score (AUROC=0.67) or Tsai’s model

(AUROC=0.72). In addition, unlike the Mehran score, which

requires intraprocedural variables, this simple model in-

cluded only preprocedural variables, which makes it possible

to predict the risk of CIN before using contrast.

Furthermore, our model requires fewer variables than the

previously developed CIN risk prediction model based on

machine learning, which requires more than 12 vari-

ables (17-19, 31). Yin’s model (18) exhibits impressive per-

formance with a parsimonious set of 13 variables. However,

it is noteworthy that the study was conducted exclusively in

a single hospital without any external validation. Yin’s

model outperforms Gurm’s model (17), which is the second-

best, by a margin of 0.067 AUROC units, despite having

fewer variables. This observation raises a concern about po-

tential overfitting. Sun’s model (31) was similarly developed

within a single hospital. Otherwise, our model showed ro-

bust performance metrics in multiple hospitals, demonstrat-

ing an AUROC of 0.795 in internal validation and 0.782 and

0.766 in external validation settings. In addition, Gurm’s

model has been evaluated in several medical institutions, re-

quiring specialized assessments such as left ventricular ejec-

tion fraction (LVEF) measurements, which may incur addi-

tional costs and medical procedures. Our research findings

led us to assert that our model exhibits greater clinical util-

ity than Gurm’s model, given its reliance on routine labora-

tory and diagnostic tests.

Our model was developed at a tertiary teaching hospital.

However, it received multicenter validation in hospitals of

various levels, showing particularly favorable results in

community-based hospitals, which often have a shortage of

medical resources (AUROC=0.782).

In the subgroup analysis, the difference in model perform-

ance according to sex was insignificant. When grouped by

age, the AUROC in the subgroup did not fall more than

0.05 for the entire group, except for the 70 to <80 years old

group for the ISH dataset and the �80 years old group for

the BSH dataset. This result is thought to be mainly because

50- to 70-year-old patients comprised the majority of partici-

pants. Further studies are needed to obtain more data on

older adults.

The seven variables used in the simple model were se-

lected from the complex model based on variable impor-

tance and included the age, history of CKD, hematocrit, tro-

ponin I level, BUN level, base excess, and NT-pro-BNP

level. Age and CKD are well-known risk factors for

CIN (32, 33) and have been included in many previously

developed CIN predictive models (34). Several studies have

reported that the hematocrit result (35), BUN level (36, 37),

and pro-BNP level (38-40) are related to CIN. In addition,

as CIN is more common in emergent PCI following ST

segment-elevation myocardial infarction than in elective

PCI (41, 42), we can speculate that troponin I levels may be

a risk factor for developing CIN. Base excess is not a well-

known risk factor for CIN. This might be the first study to

include base excess to estimate the risk of CIN. Nonethe-

less, as base excess is an indicator of hypoperfusion and hy-

potension (leading to hypoperfusion) can be a risk factor for

CIN (43, 44), we can hypothesize that base excess is related

to CIN. Further studies are needed to determine the associa-

tion between base excess and the risk of CIN.

Several limitations associated with the present study war-

rant mention. First, it was a retrospective, single-nation

study. We conducted multicenter validation in hospitals of

various levels, and the model robustness for other countries

or ethnic groups has not been validated. Further multina-

tional studies are needed. Second, we did not include the

amount of urine output because of incomplete urine output

data. Although urine output was also excluded in several

AKI studies (18, 45), this omission may have excluded AKI

patients with decreased urine output but not increased cre-
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atinine levels (46, 47). Third, it was challenging to extract

information from patients without pre-PCI hospital records.

To avoid this limitation, we only included patients who had

medical records for at least one year before the index date

of PCI.

In conclusion, we developed an applicable and simple

CIN prediction model. Using machine learning techniques,

our model requires fewer variables than do the Mehran cri-

teria and shows a higher performance as well. We also vali-

dated the robustness of the model at multiple centers at vari-

ous levels. In addition, we opened our model publicly as a

web application for easy clinical applications.

The authors state that they have no Conflict of Interest (COI).
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