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Deep learning based automatic detection algorithm for acute
intracranial haemorrhage: a pivotal randomized clinical trial
Tae Jin Yun 1,2, Jin Wook Choi 3✉, Miran Han3, Woo Sang Jung3, Seung Hong Choi1,2, Roh-Eul Yoo1,2 and In Pyeong Hwang1,2

Acute intracranial haemorrhage (AIH) is a potentially life-threatening emergency that requires prompt and accurate assessment and
management. This study aims to develop and validate an artificial intelligence (AI) algorithm for diagnosing AIH using brain-
computed tomography (CT) images. A retrospective, multi-reader, pivotal, crossover, randomised study was performed to validate
the performance of an AI algorithm was trained using 104,666 slices from 3010 patients. Brain CT images (12,663 slices from 296
patients) were evaluated by nine reviewers belonging to one of the three subgroups (non-radiologist physicians, n= 3; board-
certified radiologists, n= 3; and neuroradiologists, n= 3) with and without the aid of our AI algorithm. Sensitivity, specificity, and
accuracy were compared between AI-unassisted and AI-assisted interpretations using the chi-square test. Brain CT interpretation
with AI assistance results in significantly higher diagnostic accuracy than that without AI assistance (0.9703 vs. 0.9471, p < 0.0001,
patient-wise). Among the three subgroups of reviewers, non-radiologist physicians demonstrate the greatest improvement in
diagnostic accuracy for brain CT interpretation with AI assistance compared to that without AI assistance. For board-certified
radiologists, the diagnostic accuracy for brain CT interpretation is significantly higher with AI assistance than without AI assistance.
For neuroradiologists, although brain CT interpretation with AI assistance results in a trend for higher diagnostic accuracy compared
to that without AI assistance, the difference does not reach statistical significance. For the detection of AIH, brain CT interpretation
with AI assistance results in better diagnostic performance than that without AI assistance, with the most significant improvement
observed for non-radiologist physicians.
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INTRODUCTION
Acute intracranial haemorrhage (AIH) is a life-threatening disease
with a 30-day mortality rate ranging from 35% to 52%. Most
notably, only 20% of survivors are expected to achieve full
functional recovery at 6 months1–3. Magnetic resonance imaging
(MRI) scans may be as accurate as CT scans with regard to the
detection of AIH in patients presenting with acute focal stroke
symptoms4 and are more accurate than CT scans in terms of
detecting microhaemorrhage. Nevertheless, non-contrast brain CT
scans are the most widely used first-line diagnostic approach for
identifying AIH due to the several disadvantages of MRI scans,
including their limited availability, long image acquisition times,
high cost, and issues with patient tolerance5,6

Despite the clinical relevance of diagnosing AIH using brain CT
scans—false negatives may delay correct diagnosis, which can
cause devastating consequences, whereas false positives will lead
to unnecessary examinations—prompt and accurate assessment
of AIH using brain CT scans remains a challenge for physicians. In
addition, the high volumes of imaging data that require
assessment place a significant burden on radiologists who need
to maintain diagnostic accuracy and efficiency7,8.
Over the past decade, deep learning-based artificial intelligence

(AI) technology has made significant advances with improvements
in computer power and accumulation of ‘big data’. Advances in
deep learning-based image recognition, as a part of machine
learning, are transforming the medical field and have the potential
to further improve the processes in the medical imaging domain9.
These innovations may increase diagnostic accuracy, enable
prompt diagnosis and improved management of various

conditions, and facilitate new biological insights. Various AI
algorithms for AIH diagnosis have been developed and shown
promising results in the detection, classification, quantification,
and prediction of AIH using brain CT scans7,8,10–15.
Previous studies employing deep learning architectures have

predominantly used haemorrhage detection methods based on
labelling or segmentation by experts7,8,10,11,13,15–17. However, the
classification of AIH is contingent on the opinion of experts, and
the training of the system depends on the labelling of AIH-
suspected areas by experts. As such, discordance between experts
regarding the final classifications or labelling of images is
inevitable. In addition, poorly defined characteristics, variability
in sizes and morphologies, and the attenuation of AIH contribute
to inter-observer discordance even between expert neuroradiol-
ogists. In this regard, an anomaly detection process based on
unsupervised training alongside a haemorrhage detection process
can overcome the drawbacks of the supervised haemorrhage
detection process used in conventional AI algorithms for
intracranial haemorrhage detection, leading to an improvement
in diagnostic performance18–22. In terms of deep learning
architectures used for haemorrhage detection, the majority of
previous investigations have relied on convolutional neural
network (CNN)-based AI algorithms that have been reported to
classify and quantify intracranial haemorrhages with good
diagnostic performance11,13,23–26. Recent studies have proposed
new deep learning architectures based on a joint recurrent neural
network (CNN-RNN) approach with promising results, highlighting
its potential for assisting radiologists and physicians in their
clinical diagnosis workflow15,27.
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Although the excellent performance of deep learning-based AI
algorithms has been proven in the internal validation cohort,
achieving persistent favourable results without performance
decline in the external validation dataset consisting of a diverse
patient population and scanner remains challenging28,29.
In this study, we developed a deep learning-based automatic

detection AI algorithm for identifying AIH on brain CT scans based
on a new approach that combined haemorrhage detection (based
on a joint CNN-RNN system) and anomaly detection (based on
unsupervised training) using a large dataset. We evaluate the
diagnostic performance of this AI algorithm in a large external
validation dataset to validate our approach and also conduct a
retrospective multi-reader study to validate the improvement in
the diagnostic performance with the assistance of our AI
algorithm by clinicians of varying expertise levels.

RESULTS
Diagnostic performance of the AI-based diagnostic support
software in the external validation dataset
The overall AUROC for AI performance in the external validation
dataset was 0.992 and 0.977 for patient-wise and slice-wise
analyses, respectively. The patient and slice-wise analyses
indicated a sensitivity of 94.4% and 79.0% and a specificity of
98.2% and 99.3%, respectively. Details regarding the results for
external validation are presented in Table 1 and Supplementary
Tables 1–3.

Evaluation of the diagnostic performance of the AI-based
diagnostic support software
The overall AUROC for AI standalone performance in the dataset
for the reader assessment study was 0.9874 and 0.9671 for
patient-wise and slice-wise analyses, respectively (Figs. 3 and 4).
For patient-wise analysis, the best diagnostic performance was
achieved with a cut-off level of 39.84%, sensitivity of 95.89%, and
specificity of 95.33%. For slice-wise analysis, the best diagnostic
performance was achieved with a cut-off level of 7.70%, sensitivity
of 89.87%, and specificity of 91.60%. At a cut-off level of 50.0%, the
sensitivity and specificity were 93.84% and 97.33%, respectively, in
the patient-wise analysis and 67.26% and 99.60%, respectively, in
the slice-wise analysis (Figs. 1 and 2).

Reader assessment study
In the reader assessment study, the AI-assisted group exhibited a
significantly higher diagnostic accuracy in detecting AIH than the AI-
unassisted group for both patient-wise (0.9703 vs. 0.9471, p< 0.0001)
and slice-wise analyses (0.9581 vs. 0.9522, p < 0.0001). Compared with
the AI-unassisted group, the AI-assisted group achieved significantly
higher sensitivity (0.9718 vs. 0.9437, p= 0.0003 for patient-wise
analysis and 0.8469 vs. 0.8299, p< 0.0001 for slice-wise analysis) and
specificity (0.9689 vs. 0.9504, p= 0.0145 for patient-wise analysis and
0.9855 vs. 0.9824, p< 0.0001 for slice-wise analysis) (Tables 2 and 3,
Figs. 1 and 2).
Among the three subgroups of reviewers, the non-radiologist

physicians demonstrated the greatest improvement in diagnostic
accuracy with the use of AI assistance compared with that without

Table 1. Diagnostic performance of AI in the external validation set (full analysis set: 49,841 patients, 1,855,465 slices).

Accuracy Recall (sensitivity) Precision (PPV) F1 score Specificity AUC NPV

Patient-wise(N= 49,841) 0.977 0.944 0.894 0.913 0.982 0.992 0.992

Slice-wise (N= 1,855,465) 0.985 0.790 0.832 0.810 0.993 0.977 0.991

PPV positive predictive value, AUC area under the receiver-operating curve, NPV negative predictive value.

Table 2. Accuracy, sensitivity, and specificity of each subgroup after conducting AI-assisted or AI-unassisted evaluation in patient-wise analysis.

Reviewers AI-assisted (N= 296) AI-unassisted (N= 296) Difference (AI-assisted–AI-unassisted) p valuea

Accuracy (%) (95% confidence interval)

Total reviewers 97.03 (96.32, 97.65) 94.71 (93.79, 95.53) 2.33 (1.26, 3.39) <0.0001

Non-radiology physiciansb 95.05 (93.40, 96.38) 91.89 (89.90, 93.60) 3.15 (0.86, 5.45) 0.0072

Board-certificated radiologistsc 97.41 (96.14, 98.35) 94.59 (92.90, 95.99) 2.82 (1.00, 4.63) 0.0025

Neuroradiologistsd 98.65 (97.65, 99.30) 97,64 (96.41, 98.53) 1.01 (−0.24, 2.27) 0.1138

Sensitivity (%) (95% confidence interval)

Total reviewers 97.18 (96.29, 98.08) 94.37 (93.12, 95.61) 2.82 (1.28, 4.35) 0.0003

Non-radiology physiciansb 96.12 (93.86, 97.72) 92.69 (89.84, 94.95) 3.42 (0.39, 6.46) 0.0274

Board-certificated radiologistsc 96.58 (94.41, 98.07) 92.69 (89.84, 94.95) 3.88 (0.91, 6.85) 0.0108

Neuroradiologistsd 98.86 (97.36, 99.63) 97.72 (95.84, 98.90) 1.14 (−0.57, 2.86) 0.1929

Specificity (%) (95% confidence interval)

Total reviewers 96.89 (95.82, 97.75) 95.04 (93.74, 96.13) 1.85 (0.37, 3.34) 0.0145

Non-radiology physiciansb 94.00 (91.39, 96.01) 91.11 (88.09, 93.57) 2.89 (−0.54, 6.31) 0.0988

Board-certificated radiologistsc 98.22 (96.53, 99.23) 96.44 (94.29, 97.95) 1.78 (−0.32, 3.88) 0.0979

Neuroradiologistsd 98.44 (96.82, 99.37) 97.56 (95.67, 98.77) 0.89 (−0.94, 2.72) 0.3409

AI artificial intelligence, N patient number.
aChi-square test.
bNon-radiology physicians: 5–7 years of experience as a non-radiology physician.
cBoard-certified radiologists: 5–7 years of experience as a radiologist.
dNeuroradiologists: 7–11 years of experience as a radiologist, including 3–7 years of experience as neuroradiologists.
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AI assistance (0.9505 vs. 0.9189, with a difference of 3.15%,
p= 0.0072 for patient-wise analysis and 0.9393 vs. 0.9306, with a
difference of 0.87%, p < 0.0001 for slice-wise analysis). For the
board-certified radiologists, AIH detection with AI assistance
resulted in a significantly higher diagnostic accuracy compared
with that without AI assistance (0.9741 vs. 0.9459, with a
difference of 2.82%, p= 0.0025 for patient-wise analysis and
0.9632 vs. 0.9567, with a difference of 0.75%, p < 0.0001 for slice-
wise analysis). For neuroradiologists, although AIH detection with

AI assistance exhibited a trend for higher diagnostic accuracy
compared with that without AI assistance, this did not reach
statistical significance (0.9865 vs. 0.9764, with a difference of
1.01%, p= 0.1138 for patient-wise analysis and 0.9706 vs. 0.9691,
with a difference of 0.15%, p= 0.2345 for slice-wise analysis)
(Tables 2 and 3, Figs. 1 and 2). The diagnostic performance of the
reviewers with basic ROC curves for AI standalone performance
based on patient- and slice-wise analyses are presented in Figs. 1
and 2, respectively.

Table 3. Accuracy, sensitivity, and specificity of each subgroup after conducting AI-assisted or AI-unassisted evaluation in slice-wise analysis.

Reviewers AI-assisted (N= 12,663) AI-unassisted (N= 12,663) Difference (AI-assisted–AI-unassisted) p valuea

Accuracy (%) (95% confidence interval)

Total reviewers 95.81 (95.69, 95.92) 95.22 (95.09, 95.34) 0.59 (0.42, 0.76) <0.0001

Non-radiology physiciansb 93.93 (93.69, 94.17) 93.06 (92.80, 93.32) 0.87 (0.52, 1.22) <0.0001

Board-certificated radiologistsc 96.42 (96.23, 96.61) 95.67 (95.46, 95.87) 0.75 (0.48, 1.03) <0.0001

Neuroradiologistsd 97.06 (96.89, 97.23) 96.91 (96.74, 97.09) 0.15 (−0.10, 0.39) 0.2345

Sensitivity (%) (95% confidence interval)

Total reviewers 84.69 (84.21, 85.16) 82.99 (82.50, 83.48) 1.70 (1.02, 2.38) <0.0001

Non-radiology physiciansb 76.33 (75.35, 77.29) 76.00 (75.02, 76.96) 0.33 (−1.03, 1.69) 0.6324

Board-certificated radiologistsc 88.40 (87.65, 89.11) 84.78 (83.95, 85.59) 3.62 (2.53, 4.70) <0.0001

Neuroradiologistsd 89.34 (88.62, 90.03) 88.20 (87.45, 88.92) 1.14 (0.13, 2.15) 0.0264

Specificity (%) (95% confidence interval)

Total reviewers 98.55 (98.47, 98.63) 98.24 (98.15, 98.32) 0.32 (0.20, 0.43) <0.0001

Non-radiology physiciansb 98.28 (98.13, 98.42) 97.28 (97.09, 97.46) 1.00 (0.77, 1.24) <0.0001

Board-certificated radiologistsc 98.40 (98.26, 98.54) 98.36 (98.21, 98.50) 0.05 (−0.15, 0.25) 0.6531

Neuroradiologistsd 98.97 (98.85, 99.08) 99.07 (98.95, 99.17) −0.10 (−0.26, 0.06) 0.2176

AI artificial intelligence, N patient number.
aChi-square test.
bNon-radiology physicians: 5–7 years of experience as a non-radiology physician.
cBoard-certified radiologists: 5–7 years of experience as a radiologist.
dNeuroradiologists: 7–11 years of experience as a radiologist, including 3–7 years of experience as neuroradiologists.

Fig. 1 Diagnostic performance of reviewers in terms of basic ROC curves for patient-wise AI standalone performance. In the reader
assessment study, the AI-assisted group demonstrated significantly higher diagnostic accuracy in AIH detection compared to the AI-
unassisted group in the patient-wise analysis (0.9703 [95% CI: 0.9632, 0.9765] vs. 0.9471 [95% CI: 0.9379, 0.9553], p < 0.0001). Based on
subgroup analysis, non-radiologist physicians achieved the greatest benefit in terms of improvement in diagnostic accuracy with AI assistance
relative to that for the AI-unassisted group (0.9505 [95% CI: 0.9340, 0.9638] vs. 0.9189 [95% CI: 0.8990, 0.9360], with an improvement of 3.15
[95% CI: 0.86, 5.45], p= 0.0072) for non-radiologist physicians to the level of radiologists without AI assistance (0.9459 [95% CI: 0.9290, 0.9599]).
In addition, board-certified radiologists demonstrated a significant improvement in diagnostic accuracy with AI assistance relative to that for
the AI-unassisted group (0.9741 [95% CI: 0.9614, 0.9835] vs. 0.9459 [95% CI: 0.9290, 0.9599], with an improvement of 2.82 [95% CI: 1.00, 4.63],
p= 0.0025), with an improvement for board-certified radiologists to the level of neuroradiologists without AI assistance (0.9764 [95% CI:
0.9641, 0.9853]). Note. ROC: receiver operating characteristic.
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GEE analysis revealed that AI assistance resulted in a significant
increase in accuracy in both patient- (3.67 for the AI-assisted
group and 3.01 for the AI-unassisted group, with a difference of
0.66, p= 0.0075) and slice-wise analyses (3.21 for the AI-assisted
group and 3.03 for the AI-unassisted group, with a difference of
0.18, p < 0.0001). Sensitivity increased significantly in both patient-
(4.24 for the AI-assisted group and 2.89 for the AI-unassisted
group, with a difference of 1.35, p= 0.017) and slice-wise analyses
(1.75 for the AI-assisted group and 1.69 for the AI-unassisted
group, with a difference of 0.05, p= 0.3273). Specificity also
increased significantly in both patient- (3.81 for the AI-assisted
group and 3.17 for the AI-unassisted group, with a difference of
0.364, p= 0.0376) and slice-wise analyses (4.56 for the AI-assisted
group and 4.15 for the AI-unassisted group, with a difference of
0.41, p < 0.0001) (Supplementary Tables 4–7).
The ICC indicated that the AI-assisted and AI-unassisted groups

demonstrated excellent (0.9193) and good (0.8475) reliability,
respectively. Representative images of AIH detection from brain
CT images are presented in Fig. 3 and Supplementary Fig. 1.

DISCUSSION
In the present study, we reported a new AI algorithm that uses a
combination of supervised training for haemorrhage detection
and unsupervised training for anomaly detection. In addition, we
applied a joint CNN-RNN architecture for haemorrhage detection.
Our AI algorithm achieved high accuracy for standalone AI
detection, and its use in AI-assisted interpretation resulted in
superior diagnostic performance in detecting AIH relative to
interpretation without AI assistance.
With respect to the AUROC values, the performance of the

standalone AI algorithm in the external validation study (0.992 and
0.977 in patient- and slice-wise analyses, respectively) and reader
assessment study (0.9874 and 0.9671 in patient- and slice-wise
analyses, respectively) were comparable with the performance of
the neuroradiologist subgroup without AI assistance (0.9764 and
0.9691 in patient- and slice-wise analyses, respectively). These
diagnostic accuracies were higher than those reported by the
majority of previous studies7,8,10,11,13,15 and were comparable with
the results achieved in a previous study (AUROC= 0.991), which
reported that AI standalone performance was comparable with

that of highly trained experts13. Furthermore, in the present study,
the high sensitivity of 95.89% and specificity of 95.33% achieved
by our approach at a cut-off level of 39.84% in the patient-wise
analysis was higher than those achieved by reviewers without AI
assistance (94.37% and 95.04%, respectively). The promising
results achieved by our AI algorithm highlight its potential for
the accurate detection of AIH on brain CT images.
In the reader assessment study, which employed a retro-

spective, multi-reader, pivotal, crossover, randomised study
design, the AI-assisted group demonstrated a significantly higher
diagnostic accuracy in detecting AIH than the AI-unassisted group.
In addition, the superior performance of the AI-assisted group in
terms of diagnostic accuracy was validated using GEE analysis. To
the best of our knowledge, the beneficial effects of AI assistance in
reader interpretation for the detection of AIH on brain CT images
have not been previously reported. The promising findings in this
study support the practical relevance of using AI in clinical settings
to improve patient care. Notably, with the aid of our AI algorithm,
the diagnostic performance of non-radiologist physicians reached
the level for radiologists and the diagnostic performance of
radiologists reached the level for neuroradiologists for the
detection of AIH on brain CT images. We believe that our AI
algorithm may play a key role as a reliable assistant in real-world
clinical practice where prompt aid by expert radiologists or
neuroradiologists may be unavailable. In addition, our AI
algorithm may partly relieve the burden of radiologists and
neuroradiologists who encounter large volumes of CT images that
require interpretation with high diagnostic accuracy and efficiency
in a timely manner. The significant improvement in sensitivity
observed in this study implies that the present AI algorithm may
reduce the occurrence of false negatives in which AIH may be
erroneously excluded, thereby enabling prompt management that
is critical for patients with AIH.
It is interesting to note that the difference between AI-assisted and

AI-unassisted sensitivities shows a lower value for the slice-wise
manner (1.70%) than that for the patient-wise manner (2.82%), and
the improvement in terms of sensitivity for non-radiologist physicians
in the patient-wise manner failed to achieve the statistical
significance in the slice-wise manner (Tables 2 and 3). In addition,
according to the GEE analysis, achievement of statistically significant
superiority failed only in the analysis of sensitivity in slice-wise

Fig. 2 Diagnostic performance of reviewers in terms of basic ROC curves for slice-wise AI standalone performance. In the reader
assessment study, the AI-assisted group demonstrated a significantly higher diagnostic accuracy in detecting AIH than that of the AI-
unassisted group in the slice-wise analysis (0.9581 [95% CI: 0.9569, 0.9592] vs. 0.9522 [95% CI: 0.9509, 0.9534], p < 0.0001). Based on the
subgroup analysis, non-radiologist physicians and board-certified radiologists demonstrated a significant improvement in diagnostic accuracy
with AI assistance relative to that for the AI-unassisted group (for non-radiologist physicians: 0.9393 [95% CI: 0.9369, 0.9417] vs. 0.9306 [95% CI:
0.9280, 0.9332], with a difference of 0.87 [95% CI: 0.52, 1.22], p < 0.0001, for board-certified radiologists 0.9632 [95% CI: 0.9623, 0.9661] vs.
0.9567 [95% CI: 0.9546, 0.9587], with a difference of 0.75 [95% CI: 0.48, 1.03], p < 0.0001). Note. ROC: receiver operating characteristic.
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manner (Supplementary Table 6). The low sensitivity of AI standalone
in the slice-wise manner (89.87%) compared with that in the patient-
wise manner (95.89%) might make a consistent positive effect on the
decision a challenge. In addition, the decrease in terms of the
positive role might affect the non-radiology physicians group at a
greater intensity. However, the statistically significant improvement
of sensitivity in the neuroradiologists group only in the slice-wise
manner remains a challenge that needs to be explained.
Although specificity was significantly improved in the AI-

assisted group for all readers, we did not observe a statistically
significant improvement in specificity for each group. This
suggests that the ability of the present AI algorithm to reduce
false positives may be limited and that our AI algorithm is more
suitable as a supportive tool rather than an alternative method for
the detection of AIH on brain CT images.
In the present study, we describe the development of a new AI

algorithm, which combines haemorrhage detection and anomaly
detection processes, with the aim of improving diagnostic
performance for the identification of AIH on brain CT images.
The majority of previous AI algorithms used to analyse medical
imaging, including those designed for intracranial haemorrhage
detection, have been developed using supervised labelling of
training images to facilitate the biomarker detection pro-
cess7,8,10,11,13,15–17. Although training using expert-labelled images
has produced promising results27,30,31, discordance in labelled
areas between experts is unavoidable. In addition, poorly defined

characteristics, variation in sizes and morphologies, and the
attenuation of AIH contribute to inter-observer discordance that
may occur even between expert neuroradiologists. Anomaly
detection is the process of identifying abnormal areas based on
unsupervised training using normal data21,22,32. The application of
anomaly detection based on unsupervised training using normal
brain CT images may overcome the drawbacks of conventional AI
algorithms for AIH detection that rely on supervised training. In
the present study, the combination of haemorrhage detection and
anomaly detection based on a relatively large dataset may have
contributed to the superior performance demonstrated by the
current AI algorithm.
To overcome the aforementioned issues and improve diag-

nostic performance, we used a combined CNN-RNN in our AI
algorithm. With regard to deep learning architectures, previous
studies have predominantly used algorithms based on 2D or 3D
CNNs11,13,23–26. However, brain CT images consist of a series of 2D
images that contain information about actual 3D structures.
Therefore, in the present study, we designed an architecture that
was more appropriate for processing 3D data and additionally
applied an RNN module to the more common CNN module. The
additional use of this RNN facilitated more accurate patient-wise
AIH probability scores and improved diagnostic performance at
both patient- and slice-wise levels.
Further work is warranted to address the utility of this AI

algorithm from a clinical perspective, including investigations on

Fig. 3 Representative images of AIH detection. a AI-assisted brain CT revealed probable AIH location as the basal cistern and right ambient
cistern. AI-assisted brain CT provided AIH probability scores in a slice-wise (95.8%) and patient-wise (99.4%) manner. All nine reviewers agreed
with the AIH diagnosis for both AI-unassisted and AI-assisted interpretations. b AI-assisted brain CT revealed the probable AIH location as the
left side of the falx. AI-assisted brain CT provided the AIH probability scores in a slice-wise (62.2%) and patient-wise (95.3%) manner. For
interpretation without AI assistance, one reviewer (non-radiologist physician) missed this case of AIH on the left side of the falx. All nine
reviewers agreed with the AIH diagnosis for both AI-unassisted and AI-assisted interpretations. c AI-assisted brain CT revealed probable AIH
location as the left parietal sulci. AI-assisted brain CT provided AIH probability scores in a slice-wise (39.0%) and patient-wise (46.3%) manner.
For interpretation without AI assistance, two-thirds of the reviewers (three non-radiologist physicians, two board-certified radiologists, and
one neuroradiologist) missed this case of AIH in the left parietal sulci. With the use of AI assistance, these six reviewers were able to correctly
revise their decisions. d AI-assisted brain CT revealed the probable AIH location as the left frontal area. AI-assisted brain CT provided the AIH
probability scores in a slice-wise (54.9%) and patient-wise (65.8%) manner. For the interpretation without AI assistance, one-third of the
reviewers (one non-radiologist physician and two board-certified radiologists) reported it as an AIH. With the use of AI assistance, an
additional one-third of the reviewers (one non-radiologist physicians, one board-certified radiologist, and one neuroradiologist) reported this
as an AIH. However, the subtle hyperattentuating lesion in the left frontal area was due to the beam-hardening artefact of the skull.
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related morbidity or mortality. In the present study, we addressed
the diagnostic accuracy of the present AI algorithm in the
detection of AIH on brain CT images; however, the critical
characteristics of AIH evolution that are associated with clinical
outcomes, including haemorrhage volume and expansion, require
assessment with follow-up imaging to gain a full understanding of
the diagnostic accuracy of our approach. As such, further
investigations regarding the clinical utility of the present AI
algorithm in patients with critical AIH for which clinical outcomes
are available will clarify its potential role in diagnosing and
managing this condition. In addition, the reading environment in
this experimental study did not replicate that of daily practice,
especially with regard to the use of clinical information. In clinical
settings, patient information, including the chief complaints,
symptoms, physical examination results, and past medical history
contributed to superior diagnostic performance of the physicians.
Therefore, the direct application of the present AI algorithm based
on its excellent diagnostic performance in this experimental study
may be premature. In addition, the classification of AIH by the
gold-standard review board in this study may be a limitation.
Determining the gold standard for AIH is challenging, particularly
when the amount of haemorrhage is subtle such that no
management is indicated, and further diagnostic steps, such as
a lumbar puncture, would not be routinely considered, and may
even be inaccurate. The ground truth may not be knowable in
such cases in routine clinical medicine. To minimise the natural
drawback in the diagnosis of AIH, in the present study, the gold
standard for AIH classification was based on the interpretation of
the gold-standard review board comprising three neuroradiolo-
gists with at least 11 years of relevant experience as radiologists,
including at least 7 years of experience as neuroradiologists.
However, achieving complete agreement between the two
primary neuroradiologists was challenging. In the present study,
the weighted kappa value for the inter-rater agreement between
the experienced neuroradiologists was 0.9865, and two cases that
were initially included in the AIH group were reclassified to the
normal (without AIH) group. Although our approach to achieve a
gold standard diagnosis was reasonable, there may be limitations
in terms of the appropriateness of our method for identifying the
gold standard used for validation of the AI algorithm, which
achieved a diagnostic accuracy of up to 0.9874 according to these
decisions. Finally, demographic traits of the included cases and
retrospective design of the study that allows for possible selection
bias are additional limitations.
In conclusion, we developed a deep learning-based AI

algorithm for automatic AIH detection on brain CT images based
on a combination of a haemorrhage detection process, which
employed a combined CNN-RNN architecture, and an anomaly
detection process, which used unsupervised training. The
diagnostic performance of the AI algorithm was validated in a
large external validation dataset. Additionally, the improvement in
diagnostic performance with AI assistance versus that without AI
assistance was also validated in this retrospective multi-
reader study.

METHODS
Study design
We developed and validated a deep learning-based AI algorithm
(Medical Insight+ Brain Hemorrhage, SK Inc. C&C, Seongnam,
Republic of Korea) for automatic AIH detection on brain CT scans.
This study was approved by the institutional review boards of the
participating institutions (H-2007-061-1140, Seoul National Uni-
versity Hospital Institutional Review Board [institution A] and
AJIRB-DEV-DE3-20-379, Ajou University Medical Center Institu-
tional Review Board [institution B]), and the requirement for

informed consent was waived owing to the retrospective nature
of this study.

Development dataset
To develop the AI algorithm for use with our diagnostic support
software, 104,666 slices (28,351 [27.1%] with AIH and 76,315
[72.9%] without AIH) from 3010 patients (2010 [66.8%] with AIH
and 1000 [33.2%] without AIH) from two institutions (Seoul
National University Hospital [institution A] and Ajou University
Medical Center [institution B]) were used for model development.
Data were collected from patients in institutions A and B between
April 2009 and December 2015 and between April 2004 and April
2020, respectively. AIH at the underlying pathology (including
intratumoural haemorrhage and haemorrhagic transformation at
the site of acute ischaemic stroke) as well as solitary AIH were also
enrolled in the AIH group. Most of the development dataset (2632
among total 3010 patients [87 4%]) had a slice thickness of 5 mm
(2 5mm [n= 3], 3.0 mm [n= 104], 3.75 mm [n= 1], 4.0 mm
[n= 40], 4.5 mm [n= 209], 4.8 mm [n= 12], 5.3125 mm [n= 1],
6.0 mm [n= 4], and 7.0 mm [n= 4]).

External validation dataset
For the external validation of the diagnostic performance of the AI
algorithm, 1,855,465 slices (73,467 [4 0%] with AIH and 1,781,998
[96.0%] without AIH) from 49,841 patients (6442 [12.9%] with AIH
and 43,399 [87.1%] without AIH) in the AI hub under the direction
of the Korean National Information Society Agency (https://
aihub.or.kr/aidata/34101) were used. This dataset was collected
from six medical institutions in Korea in 2020 as a big data
collection project on cerebrovascular disease, and the hospitals
contributing to the data collection for the AI hub are different
from the hospitals from which the development dataset was
collected. The decision regarding whether all 1,855,465 slices from
49,841 patients were either AIH or normal was made based on the
image interpretation by the neuroradiologists at each institution.
A total of 6442 CT images showed AIH, including 2424 cases of
subarachnoid haemorrhage, 2738 cases of subdural haemorrhage,
371 cases of epidural haemorrhage, 1266 cases of intraventricular
haemorrhage, and 3367 cases of intraparenchymal haemorrhage
(note: overlapping subtypes were possible). A total of 73,467 slices
exhibited AIH, including 32,751 cases of subarachnoid haemor-
rhage, 39,604 cases of subdural haemorrhage, 4567 cases of
epidural haemorrhage, 18,220 cases of intraventricular haemor-
rhage, and 35,669 cases of intraparenchymal haemorrhage (note:
overlapping subtypes were possible). A summary of the patient
and scanner information regarding the external validation is
presented in Supplementary Tables 8 and 9.

Reader study dataset
A dataset temporally separated from the development dataset
was obtained for reader assessment. A total of 12,663 brain (2508
AIH [19 8%] and 10,155 normal [81.2%]) from 296 patients (146
AIH [49 3%] and 150 normal [51.7%]) CT slices were obtained from
two institutions (Seoul National University Hospital [institution A]
and Ajou University Medical Center [institution B]). Data were
collected from patients in institutions A and B between January
2016 and December 2019 and between April 2004 and April 2020,
respectively. Patients enrolled in the development dataset were
not enrolled in the reader study dataset.
All 296 complete CT images that satisfied the criteria for image

quality modified from previously reported criteria were enrolled as
the dataset for the reader assessment study (Supplementary Table
10)33,34. The number of required CT images was calculated using
the power estimation method with the significance level set to 5%
and the power to 90%, which was based on a sensitivity of 88.6%
as reported previously27 and a sensitivity of 98.5% from internal
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validation of the present AI algorithm. This resulted in a total of
148 CT images for each group while accounting for a 15% dropout
rate. In addition, based on a specificity of 88.6% reported in a
previous study27 and a specificity of 96.0% from internal validation
of the present AI algorithm, 114 CT images for each group were
obtained while accounting for a 15% dropout rate.
The gold standard for interpretation of all 12,663 slices from 296

CT images as either AIH or normal was achieved via careful
consensus of a gold-standard review board comprising three
neuroradiologists with at least 11 and 7 years of experience as
radiologists and neuroradiologists, respectively. For CT interpreta-
tion, two radiologists independently interpreted the presence or
absence of AIH in both a patient-wise and slice-wise manner. A
third neuroradiologist reviewed the cases for which there was a
disagreement between the two initial neuroradiologists to make a
final decision. The weighted kappa value of the inter-rater
agreement between the initial independent interpretations by
the experienced neuroradiologists was 0.9865 [95% CI: 0.9732,
0.9997] for patient-wise analysis and was based on the
interpretations of the gold-standard review board. Two cases that
had initially been categorised in the AIH group according to
medical records were reclassified to the normal group. In total, 146
CT images exhibited AIH, including 101 cases of subarachnoid
haemorrhage, 72 cases of subdural haemorrhage, 20 cases of
epidural haemorrhage, 40 cases of intraventricular haemorrhage,
and 66 cases of intraparenchymal haemorrhage (note: over-
lapping subtypes were possible). A total of 2508 slices exhibited
AIH, including 1408 cases of subarachnoid haemorrhage, 1150
cases of subdural haemorrhage, 228 cases of epidural haemor-
rhage, 240 cases of intraventricular haemorrhage, and 535 cases of
intraparenchymal haemorrhage (note: overlapping subtypes were
possible). A summary of the reader study population is presented
in Supplementary Table 11.

Development of the AI algorithm
For AI algorithm development, 28,351 slices from 2010 patients
with AIH and 1000 normal participants were annotated by
neuroradiologists using nordicICE version 4.1.3 (NordicNeuroLab,
Bergen, Norway), with a particular focus on AIH areas. To
overcome the drawbacks of inter-observer variability by super-
vised training, we developed a new AI algorithm based on a
combination of a supervised haemorrhage detection process and
an unsupervised anomaly detection process.
The purpose of the haemorrhage detection process is to predict

whether AIH is present on brain CT images. This process consists
of two modules15,27,35. The first is a CNN-based haemorrhage
detection module that provides the feature vector and AIH score
for the target. The second is an RNN-based sequence module with
double layers. In this module, more accurate AIH scores for each
slice are produced using the feature vectors and scores from the
first module as inputs to overcome the limitations of CNNs in
terms of 3D image data analysis. In addition, scores for each
patient were acquired simultaneously.
An anomaly detection process was applied to predict whether

anomalies were present on brain CT images. A generation module
based on a variational auto-encoder36,37 and a generative
adversarial network38 was used in this process. The generation
module was trained to generate normal CT slices (restored CT
images) using images from the normal group. As such, a
comparison of restored and input CT images indicated areas of
anomaly when considering areas presumed to have AIH in the
haemorrhage detection process.
Finally, AI-assisted brain CT images, which included an

embedded heatmap depicting the probable location of AIH
according to patient- and slice-wise AIH probability scores, were
provided to the picture archiving and communication system
(PACS) viewer alongside original brain CT images (Fig. 1). An

overview and details of the AI algorithm architecture are
presented in Fig. 4 and Supplementary Figs. 2 and 3.

Diagnostic performance of the AI-based diagnostic support
software in the external validation dataset
Per-patient and per-slice AIH probability scores were used to
evaluate the standalone performance metrics of our AI algorithm,
including the accuracy, sensitivity, specificity, positive predictive
value, negative predictive value, F1 score, and area under the
receiver operating characteristic curve (AUROC).

Evaluation of the diagnostic performance of the AI-based
diagnostic support software
Per-patient and per-slice AIH probability scores were used to
evaluate the standalone performance metrics of our AI algorithm,
including the AUROC, sensitivity, and specificity.

Reader assessment study
A retrospective, multi-reader, crossover, superiority, pivotal,
randomised study was performed to evaluate the efficacy of the
software assisting the diagnosis decision with respect to the
identification and detection of intracranial haemorrhage on brain
CT scans (Clinical Research Information Service of Republic of
Korea [https://cris.nih.go.kr; identifier: KCT0006734], which is a
Korean primary registry of the World Health Organization’s
International Clinical Trials Registry Platform that is under the
direction of the Korea Disease Control and Prevention Agency)
(Supplementary Note (Study Details)).
This retrospective multi-reader study was conducted with nine

reviewers from four institutions in South Korea (Seoul National
University Hospital, Ajou University Medical Center, Bundang
Seoul National University Hospital, and Seongnam Medical Center)
using 12,663 brain CT slices from 296 patients as the study
dataset. Nine physicians from three different subgroups with
equal numbers (i.e., three non-radiologist physicians with 5–7
years of experience in that role, three board-certified radiologists
with 5–7 years of experience in that role, and three subspecialty-
trained neuroradiologists with 7–11 years of experience as
radiologists, including 3–7 years of experience as neuroradiolo-
gists) participated as reviewers.
In this retrospective, multi-reader, pivotal, crossover, rando-

mised study, prior to the first assessment, the full CT dataset was
split into groups A and B, each comprising CT images from 148
patients, and numbers for sequential assessment were randomly
assigned. Group A consisted of original CT images and corre-
sponding AI-assisted CT images, while group B consisted of only
original CT images without AI-assisted CT images. The AI-assisted
CT images provided a heatmap with information on the suspected
location of AIH and probability of AIH in a patient- and slice-wise
manner. Each reviewer independently reviewed the CT images for
the detection of AIH. The PACS image viewer was used to assess
CT images in a patient- and slice-wise manner. The reviewers were
blinded to the decisions of the gold-standard review board with
regard to AIH and proportion of AIH cases in the assessed dataset.
After a washout period of 4–5 weeks, a second assessment was
conducted. In the second assessment, the group A dataset
comprising original and AI-assisted CT images during the first
assessment was changed to include only the original CT images
without any AI-assisted CT images, whereas AI-assisted CT images
were added to the group B dataset that had previously included
only the original CT images without AI-assisted CT images. The
numbers for sequential assessments were randomly re-assigned.
Each reviewer repeated the same review process as per the first
assessment. A schematic overview of the study design is
presented in Fig. 5.
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Statistical analysis
AI determination was based on whether the probability provided
by the AI algorithm was equal or over the cut-off level. For
external validation, a decision was considered correct if the AI
determination matched the suggested decision made on the basis
of the basic information on the external validation dataset;

sensitivity and specificity were calculated at a cutoff level of
50.0%. However, for standalone AI assessment, a decision was
considered correct if the AI determination matched the decision
made by the gold-standard review board for AUROC analysis;
sensitivity and specificity were also calculated at a cutoff level
of 50.0%.

Fig. 4 Overview of the AI algorithm. The diagram shows the architecture of the proposed AI algorithm. This new AI algorithm combined a
supervised haemorrhage detection process and an unsupervised anomaly detection process. In addition, a combined CNN-RNN architecture
was applied in the haemorrhage detection process. The presence or absence is determined through the haemorrhage detection process. As a
result of this haemorrhage detection process, the AI algorithm provides the AIH score in the patient-wise and slice-wise manner. The AI
algorithm provides the anomaly map for AIH patients through the subtraction between the original CT image and restored CT image
(artificially generated normal image based on the unsupervised training from normal dataset) and postprocessing. The average additional
time to access the AI-assisted CT images on PACS viewer was 97.4 seconds. Time from PACS server to AI, AI processing time, and time from AI
to PACS viewer were 54.6 seconds (range, 37–91 seconds), 11.8 seconds (range, 0.8–90.6 seconds), 31.0 seconds (range, 30–33 seconds). Note.
AIH acute intracranial haemorrhage, PACS picture archiving and communication system, CNN convolutional neural network, RNN recurrent
neural network, VAE variational autoencoder, GAN generative adversarial network.

Fig. 5 Schematic overview of study design. The schematic diagram shows the retrospective, pivotal, crossover, randomised study design
used in the present study (left). In the first image review, group A consisted of original CT images and corresponding AI-assisted CT images,
while group B consisted of only the original CT images without AI-assisted CT images. After a washout period of 4–5 weeks, in the second
image review, the group A dataset was changed to include only the original CT images without any AI-assisted CT images, while AI-assisted CT
images were added to the group B dataset. The AI-assisted CT images provided a heatmap with information on the suspected location and
probability of AIH in a patient- and slice-wise manner (right).
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In the reader study, the correctness of a decision was
determined based on whether the decision of the reader
matched the decision made by the gold-standard review board.
Sensitivity, specificity, and accuracy were compared between AI-
assisted and AI-unassisted groups using the chi-square test. To
validate the superior performance of the AI-assisted group as
compared with that of the AI-unassisted group, logistic regression
using the generalised estimating equation (GEE) method was
used for significance testing and for estimating the 95%
confidence intervals (CIs). Inter-observer agreement according
to AIH subtype was analysed using an intra-class correlation
coefficient based on a patient-wise analysis. All analyses were
performed using SAS statistical software (version 9.4; SAS
Institute, Cary, NC, USA).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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