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Background: Genome-wide association studies (GWAS) on type 2 diabetes mellitus (T2DM) have identified more than 400 dis-
tinct genetic loci associated with diabetes and nearly 120 loci for fasting plasma glucose (FPG) and fasting insulin level to date. 
However, genetic risk factors for the longitudinal deterioration of FPG have not been thoroughly evaluated. We aimed to identify 
genetic variants associated with longitudinal change of FPG over time.
Methods: We used two prospective cohorts in Korean population, which included a total of 10,528 individuals without T2DM. 
GWAS of repeated measure of FPG using linear mixed model was performed to investigate the interaction of genetic variants and 
time, and meta-analysis was conducted. Genome-wide complex trait analysis was used for heritability calculation. In addition, 
expression quantitative trait loci (eQTL) analysis was performed using the Genotype-Tissue Expression project. 
Results: A small portion (4%) of the genome-wide single nucleotide polymorphism (SNP) interaction with time explained the 
total phenotypic variance of longitudinal change in FPG. A total of four known genetic variants of FPG were associated with re-
peated measure of FPG levels. One SNP (rs11187850) showed a genome-wide significant association for genetic interaction with 
time. The variant is an eQTL for NOC3 like DNA replication regulator (NOC3L) gene in pancreas and adipose tissue. Further-
more, NOC3L is also differentially expressed in pancreatic β-cells between subjects with or without T2DM. However, this variant 
was not associated with increased risk of T2DM nor elevated FPG level.
Conclusion: We identified rs11187850, which is an eQTL of NOC3L, to be associated with longitudinal change of FPG in Korean 
population.
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INTRODUCTION

Type 2 diabetes mellitus (T2DM) is diagnosed based on dis-
crete values of fasting plasma glucose (FPG) and glycosylated 
hemoglobin (HbA1c). Metabolic dysregulation presents as a 
continuum of abnormal glucose level that is above normal glu-
cose level and include prediabetes and diabetes. There has been 
a number of studies that investigated the natural course in the 
development of T2DM [1]. Based on a prospective cohort spe-
cifically designed to study the trajectories of diabetes, those 
who progressed to diabetes had elevated FPG level 10 years be-
fore the development of diabetes compared to those who re-
mained normal glucose tolerance [2]. There seems to be a rap-
id increase in FPG 2 to 6 years before diagnosis of diabetes 
[2,3]. In addition, FPG level increased as age increases, at a rate 
of 12.6 to 19.8 mg/dL per age decade [4]. However, there might 
be individual variation in the rate of longitudinal glucose 
change. This is also suggested by the fact that only about 25% 
of prediabetes subjects progress to T2DM in 5 years of follow-
up [5]. The genetic contribution on this longitudinal change in 
FPG level has not been thoroughly investigated. 

Genome-wide association studies (GWAS) on T2DM have 
identified more than 400 distinct genetic loci associated with 
T2DM [6,7] and nearly 120 loci for FPG and fasting insulin 
level [8]. However, it should be noted that genetic loci for FPG 
and T2DM does not show complete overlap [6]. This discrep-
ancy could be due to multiple factors including different range 
of glycemia studied for FPG and T2DM, interaction by envi-
ronmental factors, and most of the studies being cross section-
al in nature. Although there have been several studies that in-
vestigated the genetic association for longitudinal change in 
FPG [7], there has not been a locus that reached genome-wide 
significance. 

Therefore, the main interest lies in dependence of longitudi-
nal change in FPG on genetic variants, and their interaction 
with time. To this end, there are two popular methods to deal 
with repeated measurements: linear mixed model (LMM) and 
generalized estimating equations (GEE). LMM allows for cor-
relation within subject to vary by a specific pattern which pro-
duces models that better fit the data. Additionally, subjects 
with missing outcome and different numbers of visits can be 
included as long as the time intervals are correctly specified in 
the model. Because LMM uses maximum likelihood estima-
tion, it is robust against data which is missing at random [9]. 
GEE has the same advantages as LMM as it allows correlation 

structures through working correlation matrix and it can take 
several types of covariates. However, the main difference is that 
GEE only provides population average estimates and not indi-
vidual level information for random effects. Since it requires 
complete data or missing completely at random, it is less robust 
than LMM in missing data scenarios [9,10].

In this study, we hypothesized that using LMM will allow us 
to investigate the impact of genetic variants on FPG and its 
longitudinal change in an East Asian population. For this end, 
we used two large-scale cohorts, Korea Genome and Epidemi-
ology Study (KoGES) and Gene-Environment Interaction and 
phenotype (GENIE) cohort, to perform GWAS using LMM 
and meta-analyzed the results.

METHODS 

Study participants
The KoGES [11] was initiated in 2002, and 6,122 individuals 
who did not have T2DM at baseline examination were investi-
gated [2]. The participants consisted of 2,847 males and 3,275 
females, with age at baseline range of 40 to 69 years. FPG and 
post-challenge 2-hour plasma glucose were measured every 2 
years from 2001 to 2012. The diagnosis of T2DM was defined 
according to the American Diabetes Association (ADA) crite-
ria: FPG ≥126 mg/dL; post-challenge 2-hour plasma glucose 
≥200 mg/dL after a 75-g oral glucose load; and HbA1c ≥6.5%. 
The subjects were followed up for 11 years on average, and the 
minimum and maximum follow-up time were 6 and 12 years, 
respectively. During the follow-up period, 790 participants de-
veloped incident T2DM, and their FPG levels after the first di-
agnosis of T2DM were not included in the analyses.

The GENIE cohort consisted of 7,999 participants who had 
visited Seoul National University Hospital Healthcare System 
Gangnam Center between 2003 and 2015 for health check-up. 
A total of 4,406 participants (2,604 males and 1,802 females) 
who did not have T2DM at their baseline visit were considered 
for inclusion in the present analyses. The number of visits to 
the Gangnam Center varied among the participants, and those 
who visited the center more than three times, but less than 13 
times were ultimately including in our analysis. The partici-
pants were followed up for 6 years on average. The number of 
visits to the Gangnam Center varied among the participants, 
and those who visited the center more than three times, but 
less than 13 times were ultimately including in our analysis. 
The participants were followed up for 6 years on average. Most 
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of them had annual or biennial visit for health check-up. Al-
though follow-up intervals were not matched to those of KoG-
ES, we used the same year-unit for follow-up duration in both 
cohorts. T2DM was diagnosed according to the ADA defini-
tion as described above. During the follow-up period, 237 par-
ticipants developed incident T2DM and their FPG values after 
the first incidence of T2DM were excluded.

Genotyping and imputation
Genome-wide genotyping on the KoGES and GENIE cohorts 
was performed using the Affymetrix genome-wide human 
single nucleotide polymorphism (SNP) Array 5.0 and Affyme-
trix KOR_v1.0, respectively [12]. Variant calling was conducted 
with K-medoid algorithm approach [13]. We excluded any SNP 
marker with more than 5% missingness, minor allele frequency 
<0.05, deviation from Hardy-Weinberg equilibrium P<1.00× 
10−6, and any subjects with more than 5% missing genotype 
calls and sex inconsistency. Genotype data was managed with 
PLINK (whole genome data analysis toolset) and ONETOOL 
(a tool for family-based big data analysis) [14]. Imputation was 
conducted with IMPUTE2 (a computer program for phasing 
observed genotypes and imputing missing genotypes) using 
the cosmopolitan reference panel from 1000 Genomes Project 
phase 3. We used weighted genetic score using imputed geno-
type probabilities by IMPUTE2. Any imputed SNPs with im-
putation quality scores <0.4 were excluded. After quality con-
trol, 3,758,649 and 3,692,736 SNPs were used for association 
analyses of longitudinal change in FPG in the KoGES cohorts 
and GENIE cohorts, respectively. Supplementary Table 1 
shows the number of variants in each annotation group cate-
gorized by ANNOtate VARiation (ANNOVAR) [15]. Inter-
genic SNPs and intronic SNPs accounted for 55% and 36% of 
the total, respectively, with 6% contributed by exonic non-cod-
ing RNA. Genotype dosage scores obtained from IMPUTE2 
were used for association testing [16].

Genome-wide association analyses
Association analyses were performed with LMM using the 
lme4 package in R v.3.4.1 [17] with two random effects, inter-
cept and slope over time, for each subject and correlations be-
tween two random effects were allowed. We considered several 
models and the best model was selected by Akaike’s informa-
tion criterion. We tested a number of different models based 
on the following criterions: (1) whether to allow correlations 
between two random effects, intercept and slope over time, for 

each subject; (2) whether to consider the inverse variance of 
each time point dataset as weights; (3) whether to adjust body 
mass index (BMI) as covariate. The selected model has two 
random effects for intercept and slope over time for each sub-
ject, with nonzero correlations between them. SNP, sex, base-
line age, BMI, elapsed time on FPG, the ten principal compo-
nent scores, and the SNP-by-time interaction were included as 
covariates. For the j-th measurement of the i-th subject, our 
LMM for both the KoGES and GENIE cohorts can be ex-
pressed by 

                      
Once the LMMs were applied to both the KoGES and GENIE 

cohorts, their P values were combined with inverse variance-
weighted meta-analyses using METAL software (http://csg.
sph.umich.edu/abecasis/metal) [18]. The threshold for statisti-
cal significance in this model was P<5.00×10−8, which is con-
ventionally considered to reflect genome-wide significance. 
Selection of an appropriate suggestive significance threshold 
was P<1.00×10−5. To verify no inflation in the statistical sig-
nificance, genomic inflation factor (GIF) was calculated and 
the GIF close to 1 means no genomic inflation in the GWAS 
[19]. The SNP based heritability value reflects the relative pro-
portion of phenotypic variance explained by all observed com-
mon SNPs. SNP based heritabilities of the average and annual 
increment of FPG were estimated with genome-wide complex 
trait analysis (GCTA) v1.91.7 [20]. To estimate SNP heritability 
of FPG, we first fit the linear model (LM) for repeatedly ob-
served FPG of each subject as follows:

FGij=βi0+βi1 Ageij−   +εij, εij~N(0,σ2),

where  indicates the average of the ith subject’s age at dif-
ferent time points, and βi0 and βi1 indicate the expected FPG 
when Ageij=  and the average annual increment, respec-
tively.  

i0 and  
i1 were estimated for all subjects in both cohorts 

and were analyzed with GCTA.  
i0 and  

i1 were used as the out-
come variable, and  and sex were used as covariates. 

Expression quantitative trait loci analysis and differential 
expression in T2DM
We explored the expression quantitative trait loci (eQTL) for 
our GWAS result in the tissues associated with FPG or T2DM 
using publicly available Genotype-Tissue Expression (GTEx) 
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datasets [21]. Pancreas and adipose tissues, which are known 
to have a significant influence on FPG or T2DM, were mainly 
targeted. The candidate gene’s expression was compared for 
T2DM based on Gene Expression Omnibus (GEO) database 
of GSE25724 [22]. The platform for GSE25724 is GPL96, [HG-
U133A] Affymetrix Human Genome U133A Array, which in-
cludes seven normal pancreatic islets subjects and six T2DM 
pancreatic islets subjects. Gene differential analysis was per-
formed using the ‘limma’ R package (R Foundation for Statisti-
cal Computing, Vienna, Austria). Furthermore, Combined 
Annotation Dependent Depletion (CADD) score was calculat-
ed to predict the scoring the deleteriousness of single nucleo-
tide variants as well as insertion/deletions variants in the hu-
man genome. CADD score of 10 or greater means top 10% 
probable functional variants [23]. 

Investigation for known T2DM and glycemic variants 
To investigate whether the already well-known variants of 
T2DM and FPG are also related to longitudinal change of FPG, 
we utilized publicly available data via the The DIAbetes Genet-
ics Replication And Meta-analysis (DIAGRAM) consortium 
(http://diagram-consortium.org/), and GWAS summary re-
sults [6,8]. We identified variants associated with T2DM and 
FPG in genome-wide significance using conditional analyses 
as implemented in GCTA using GWAS results from 898,130 
European-descent individuals [6] and trans-ethnic meta-anal-
yses [6,8]. In total, 231 T2DM-related variants and 38 FPG-re-
lated variants were targeted and we considered Bonferroni-
controlled P=2.20×10−4 and P=1.30×10−3 as significance 
threshold, respectively. In total, 231 T2DM-related variants 
and 38 FPG-related variants were targeted and we considered 
Bonferroni-controlling multiple-testing procedures [24].

Statistical power calculation
Statistical power to detect effect size 0.1 to 0.5 with sample size 
of 10,528 at the genome-wide significant level (P=5.00×10−8) 
is calculated using QUANTO software version 1.2.4 (https://
quanto.software.informer.com) [25].

Ethical statements
All datasets involving human subject or genotype data must be 
approved by the Institutional Review Board (IRB) of the Seoul 
National University Hospital (H-1704-073-845). The authors 
assert that all procedures contributing to this work comply 
with the ethical standards of the relevant national and institu-

tional committees on human experimentation and with the 
Helsinki Declaration of 1975, as revised in 2008. Written in-
formed consent was obtained from all patients.

RESULTS

Clinical characteristics of study population 
A total of 6,122 subjects in the KoGES cohort were investigat-
ed at regular intervals of every 2 years, whereas the 4,406 indi-
viduals in the GENIE cohort attended voluntary annual 
health screening. The baseline characteristics of each cohort 
are described in Table 1. The proportion of male subjects was 
46% and 59% in the KoGES and GENIE cohort, respectively. 
During the follow-up period, approximately 10% and 5% of 
participants developed T2DM in the KoGES and GENIE co-
hort, respectively. The mean age at baseline was 51.5 years in 
KoGES, which was 5.8 years older than that of the GENIE co-
hort (45.7 years). The mean BMI was 24.4 kg/m2 in the KoGES 
and 23.1 kg/m2 in the GENIE. The mean FPG of the KoGES 
cohort at baseline was 84.1 mg/dL, which is about 9.8 mg/dL 
lower than that of the GENIE cohort (93.9 mg/dL). The trend 
of FPG change over time for the two cohorts is plotted in the 
Supplementary Fig. 1. The average increase of FPG per year 
was 0.59 mg/dL and 0.20 mg/dL in KoGES and GENIE co-
horts, respectively. Information on genotyping platform and 
number of variants analyzed are presented in Table 1. 

Genetic variants associated with repeated measures of FPG
We conducted GWAS meta-analysis using KoGES and GENIE 
cohorts. First, we investigated genetic variants associated with 
repeated measures of FPG using LMM as it allows to test both 
main effect of SNP and SNP×time interaction effect with lon-
gitudinal data. A total of four genetic variants were associated 
with repeated measure of FPG levels with genome-wide signif-
icance (P<5.00×10−8) using the LMM. These include rs78529-
720 (P=2.90×10−16) near glucose-6-phosphatase catalytic sub-
unit 2 (G6PC2) and ATP binding cassette subfamily B member 
11 (ABCB11), rs895636 (P=2.00×10−8) near six homeobox 3 
(SIX3), rs2971670 (P=8.34×10−20) in glucokinase (GCK), and 
rs12222793 (P=4.30×10−10) near melatonin receptor 1B (MT-
NR1B) (Table 2). All of these variants have been reported pre-
viously to be strongly associated with FPG level [26-30]. Fur-
thermore, the reported results show a trend in the same direc-
tion as observed in our study. Compared to single time point 
approach like LM analysis, multiple observations per person 
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for LMM increase the power to detect a statistically significant 
genetic loci associated with FPG (Supplementary Table 2) [31]. 
This is evidenced by the fact that all four variants had lower P 
in LMM compared to LM. Quantile-quantile (Q-Q) plot and 
Manhattan plot for the genetic association using LMM of re-
peated measures of FPG revealed no evidence for inflation of 
the test statistics (GIF=1.016) (Fig. 1A and B). The regional as-
sociation plots theses genetic loci are shown in Supplementary 
Fig. 2.

Genetic variants associated with longitudinal change in 
FPG
We further investigated genetic variants associated with longi-
tudinal change in FPG using LMM SNP×time interaction 

term. The statistical model that was used had good control of 
type 1 error as evidenced by Q-Q plot (GIF=0.999) and Man-
hattan plot as shown in (Fig. 1C and D). We found one novel 
SNP, rs11187850, near phospholipase C epsilon 1 (PLCE1) to 
be associated with longitudinal change in FPG with genome-
wide significance (P=4.85×10−8) with CADD score of 10.18. In 
addition, three variants had suggestive evidence for an associa-
tion (P<1.00×10−5): rs10947494 (P=3.64×10−6) near nudix 
hydrolase 3 (NUDT3), rs2414772 (P=6.30×10−6) near microR-
NA 6085 (MIR6085), and rs16959641 (P=2.64×10−6) near U6 
snRNA biogenesis phosphodiesterase 1 (USB1) (Table 3). Re-
gional association plots are shown using linkage disequilibri-
um information from Asian 1,000 Genomes in Fig. 2.

We fitted a simple LM with FPG as the outcome variable and 

Table 1. Baseline clinical characteristics and genotyping information 

Study  
population Total Case Control Male Age, yr BMI, 

kg/m2

Fasting 
glucose, 
mg/dL

Mean of 
F/U 

duration

Genotyping 
platform

SNP

Genotypeda Imputedb Meta 

KoGES 6,122 790 
(13)

5,332 
(87)

2,847 
(46)

51.5±8.7 24.4±3.0 84.1±8.5 11 years 
(5.5 times)

Affymetrix 
SNP Array 

5.0

399,013 3,758,649 2,713,317

GENIE 4,406 237 
(5) 

4,169 
(95) 

2,604 
(59)

45.7±8.6 23.1±2.9 93.9±9.9 6 years 
(5.7 times)

Affymetrix 
KOR_v1.0

344,632 3,692,736 

BMI, body mass index; F/U, follow-up; SNP, single nucleotide polymorphism; KoGES, Korea Genome and Epidemiology Study; GENIE, Gene-
Environment Interaction and phenotype.
aNumber of genotyped SNPs after quality control (QC): missingness per SNP <95%, minor allele frequency (MAF) <0.05, Hardy-Weinberg 
equilibrium (HWE) <1.00×10−6, and sex inconsistency, bNumber of imputed SNPs after QC: MAF <0.05, HWE <1.00×10−6, imputation quali-
ty scores <0.4.

Table 2. Genome-wide significant variants with evidence of SNP association in meta-analysis (P<5.00×10−8)

SNP Chr; position A Studya Effect SE wAF P value ANNOVAR

rs78529720 2; 169777297 T/C KoGES 1.008 0.155 7.11×10−11 G6PC2, ABCB11 (intergenic)

GENIE 1.036 0.209 0.347 7.34×10−7

META 1.017 0.124 2.90×10−16

rs895636 2; 45188353 C/T KoGES 0.574 0.151 1.43×10−4 SIX3, SIX2 (intergenic)

GENIE 0.831 0.198 0.375 2.75×10−5

META 0.668 0.120 2.00×10−8

rs2971670 7; 44226101 C/T KoGES 1.346 0.187 6.17×10−13 GCK (intronic)

GENIE 1.400 0.250 0.185 2.18×10−8

META 1.365 0.149 8.34×10−20

rs12222793 11; 92667047 A/G KoGES 0.827 0.144 1.14×10−8 FAT3, MTNR1B (intergenic)

GENIE 0.561 0.192 0.515 3.49×10−3

META 0.731 0.115 4.30×10−10

SNP, single nucleotide polymorphism; Chr, chromosome; A, reference/alternative allele; SE, standard error; wAF, weighted alternative allele fre-
quency; ANNOVAR, ANNOtate VARiation; KoGES, Korea Genome and Epidemiology Study; GENIE, Gene-Environment Interaction and 
phenotype; META, meta-analysis.
aSample size are 6,122, 4,406, and 10,528 for KoGES, GENIE, and META analysis, respectively.
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follow-up time as the independent variable, categorized by the 
three genotypes (AA/AG/GG) of the rs11187850 variant 
which showed genome-wide significant association. The alter-
native allele, G, was significantly associated with increased 
slope of FPG over time in both cohorts as shown in Supple-
mentary Fig. 3. Individuals with AG and GG genotype showed 
larger FPG increase of 0.183 mg/dL and 0.366 mg/dL per year 
compared to those with AA genotype, respectively. We further 
investigated whether SNP rs11187850 was associated with risk 

of T2DM and increased FPG. Although this variant was nomi-
nally associated with increased risk of T2DM (P=2.91×10−6) 
and increased FPG level (P=4.75×10−4) in LMM it did not 
pass the genome-wide significance threshold. Interestingly, 
this variant was an eQTL for NOC3 like DNA replication regu-
lator (NOC3L) in pancreas (P=2.20×10−11), adipose-subcuta-
neous (P=6.40×10−11), and adipose-visceral (P=2.70×10−6) in 
GTEx. Decreased expression of NOC3L gene is also associated 
with islet dysfunction (estimate of the log2-fold-change corre-

Fig. 1. Manhattan and quantile-quantile (Q-Q) plot for single nucleotide polymorphism (SNP) and SNP×time effects in meta-
analysis. (A) Manhattan plot of the P values in the genome-wide association studies (GWAS) for fasting glucose. The horizontal 
lines represent the genome-wide significance (red; P<5.0×10−8) and suggestively significant (blue; P<1.0×10−5) SNPs. (B) Q-Q 
plot showing expected versus observed (–log10 P value). The expected line is shown in red and confidence bands are shown in 
gray. (C) Manhattan plot of the P values in the GWAS for longitudinal change of fasting glucose. (D) Q-Q plot GWAS results of 
longitudinal change of fasting plasma glucose.
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Table 3. Top four variants with suggestive evidence of SNPa time association in meta-analysis (P<1.00×10−5)

SNP Chr; position A Studya Effect SE wAF P value ANNOVAR

rs10947494 6; 34263743 A/G KoGES 0.213 0.046 4.53×10−6 NUDT3, RPS10-NUDT3 (intronic)

GENIE 0.120 0.068 0.203 7.96×10−2

META 0.183 0.038 3.64×10−6

rs11187850 10; 96068480 A/G KoGES 0.152 0.042 3.49×10−4 PLCE1 (intronic)
GENIE 0.266 0.063 0.253 2.45×10−5

META 0.187 0.034 4.85×10−8

rs2414772 15; 62654213 G/A KoGES –0.163 0.039 3.26×10−5 MIR6085, MGC15885 (intergenic)
GENIE –0.134 0.058 0.676 2.14×10−2

META –0.153 0.032 6.30×10−6

rs16959641 16; 58054099 C/G KoGES 0.222 0.068 1.09×10−3 USB1 (exonic)
GENIE 0.366 0.107 0.077 6.00×10−4

META 0.263 0.057 2.46×10−6

SNP, single nucleotide polymorphism; Chr, chromosome; A, reference/alternative allele; SE, standard error; wAF, weighted alternative allele fre-
quency; ANNOVAR, ANNOtate VARiation; KoGES, Korea Genome and Epidemiology Study; GENIE, Gene-Environment Interaction and 
phenotype; META, meta-analysis.
aSample size are 6,122, 4,406, and 10,528 for KoGES, GENIE, and META analysis, respectively.
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sponding to the non-diabetic is −1.217 and P=8.25×10−4) in 
GEO datasets (GSE25724). 	

Association of known glycemic variants with longitudinal 
change in FPG
A limited number of known genetic variants of T2DM, and 
FPG were nominally associated (P<0.05) with longitudinal 
change in FPG (Table 4). Among the already known 231 
T2DM-related variants, five SNPs (rs2296172 [P=3.42×10−3] 
in MACF1, rs243021 [P=3.37×10−2] near LOC101927285 and 
MIR4432H, rs864745 [P=4.90×10−2] near JAZF1, rs10965250 
[P=2.93×10−3] near CDKN2B-AS1 and DMRTA1 and rs9552-
911 [P=4.89×10−2] near SGCG) showed association with the 
SNP×time interaction effect. Among the already known 38 
FPG-related variants, three SNPs (rs6943153 [P=3.44×10−2] 

near GRB10, rs10811661 [P=5.10×10−3] near CDKN2B-AS1 
and DMRTA1 and rs2293941 [P=2.90×10−2] near PDX1-AS1) 
had an association with longitudinal change of FPG. However, 
none of the variants were significant when Bonferroni correc-
tion was applied. These findings suggest that the variants asso-
ciated with T2DM or FPG do not have a significant impact on 
longitudinal change in glucose level over time. 

Statistical power and heritability
Our study has statistical power of 80% with a type 1 error rate 
of 5.00×10−8 to detect genetic variants, having at least effect 
size of 0.28 (i.e., 0.28 standard deviation unit difference in the 
change of FPG over time) in the longitudinal change of FPG 
(Supplementary Fig. 4). The reason for the difficulty in identi-
fying the SNPs affecting the change in FPG over time can be il-

Table 4. Variants nominally associated (P<0.05) with longitudinal change in FPG among the known loci for T2DM and FPG

Trait SNP Chr; position A Studya Effect SE wAF P value ANNOVAR

T2DM rs2296172 1; 39835817 A/G KoGES 0.145 0.051 5.08×10−3 MACF1 (exonic)

GENIE 0.097 0.079 0.144 2.21×10−1

META 0.130 0.042 3.42×10−3

rs243021 2; 60584819 G/A KoGES 0.073 0.038 5.81×10−2 LOC101927285, MIR4432H (intergenic) 

GENIE 0.060 0.057 0.667 2.94×10−1

META 0.069 0.031 3.37×10−2

rs864745 7; 28180556 T/C KoGES 0.070 0.040 8.51×10−2 JAZF1 (intronic)

GENIE 0.062 0.061 0.272 3.11×10−1

META 0.067 0.033 4.90×10−2

rs10965250 9; 22133284 G/A KoGES –0.094 0.036 9.85×10−3 CDKN2B-AS1, DMRTA1 (intergenic) 

GENIE –0.086 0.055 0.436 1.19×10−1

META –0.091 0.030 2.93×10−3

rs9552911 13; 23864657 G/A KoGES –0.084 0.044 5.66×10−2 SGCG (intronic) 

GENIE –0.053 0.066 0.225 4.25×10−1

META –0.074 0.036 4.89×10−2

FPG rs6943153 7; 50791579 T/C KoGES –0.056 0.041 1.80×10−1 GRB10 (intronic) 

GENIE –0.105 0.062 0.737 9.07×10−2

META –0.070 0.034 3.44×10−2

rs10811661 9; 22134094 T/C KoGES –0.090 0.036 1.23×10−2 CDKN2B-AS1, DMRTA1 (intergenic) 

GENIE –0.076 0.055 0.438 1.67×10−1

META –0.085 0.030 5.10×10−3

rs2293941 13; 28491198 G/A KoGES 0.084 0.037 2.41×10−2 PDX1-AS1 (ncRNA_intronic)

GENIE 0.039 0.055 0.466 4.73×10−1

META 0.069 0.030 2.90×10−2

FPG, fasting plasma glucose; T2DM, type 2 diabetes mellitus; SNP, single nucleotide polymorphism; Chr, chromosome; A, reference/alternative 
allele; SE, standard error; wAF, weighted alternative allele frequency; ANNOVAR, ANNOtate VARiation; KoGES, Korea Genome and Epidemi-
ology Study; GENIE, Gene-Environment Interaction and phenotype; META, meta-analysis.
aSample size are 6,122, 4,406, and 10,528 for KoGES, GENIE, and META analysis, respectively.
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luminated based on the GCTA analysis results. As shown in 
Supplementary Table 3, the GCTA estimated a 10% (P= 
3.52×10−3) marginal influence of the SNP effect, whereas the 
influence of the SNP-by-time interaction was only 4% (P= 
7.58×10−2). Based on these results, genetic effects on longitudi-
nal change of FPG are likely small.	

DISCUSSION

In this study, the genetic association of longitudinal change in 
FPG was analyzed in a total of 10,528 Koreans free from 
T2DM using KoGES, a large-scale community-based prospec-
tive cohort, and GENIE, a hospital-based longitudinal routine 
health checkup cohort. Since the FPG was repeatedly mea-
sured for a long period of time and the number of total mea-
surements of each participants was inconsistent, the analysis 
was conducted using the LMM method, which is known to 
have better performance than GEE in this situation [9,10]. Our 
study population was relatively homogeneous and FPG was 
measured regularly in 2 years interval for KoGES, both of 
which lead to increased statistical power. We found a novel as-
sociation between rs11187850 and longitudinal changes in 
FPG which passed the genome-wide significance threshold. 
This variant was associated with NOC3L expression level in 
pancreas and adipose tissue. Known genetic variants of FPG 
and T2DM were not associated with longitudinal change in 
FPG. To the best of our knowledge, our study is the first in 
non-Europeans to provide a comprehensive assessment of ge-
netic risk factors of longitudinal change in FPG using GWAS 
meta-analysis. 

Using LMM for repeated measure of FPG, we identified four 
known genetic variants associated FPG and one variant signifi-
cantly associated with SNP×time interaction. The rs11187850 
G allele was associated with more rapid deterioration of FPG 
over time. Interestingly, this variant was associated with meta-
bolic traits of diastolic blood pressure (P=1.37×10−19), systolic 
blood pressure (P=2.80×10−15), hypertension (P=8.20×10−12), 
and ascending aorta diameter (P=1.50×10−9) in Europeans 
[32-35]. Even though it was located in an intron of PLCE1, this 
variant was actually associated with expression level of NO-
C3L. It has been shown that the NOC3L gene is involved in 
adipocyte differentiation and glucose metabolism [36,37]. 
Taken together, it could be possible that rs11187850 affects 
longitudinal change in FPG by regulating NOC3L gene expres-
sion in metabolically active tissue such as pancreas and adi-

pose tissue. However, replication of our finding and further 
functional investigations are required. There was no other ge-
netic variant that was associated with longitudinal change in 
FPG due to limited statistical power. In addition, it could be 
possible that unlike static FPG level that is more affected by ge-
netic variants, its longitudinal change could be more affected 
by environmental factor.

One of the questions we tried to address during this study 
was whether genetic variants associated longitudinal change in 
FPG also affect risk of T2DM or degree of hyperglycemia and 
vice versa. Although the rs11187850 variant showed nominal 
association for increased static level of FPG or risk of T2DM, it 
did not reach genome-wide significance. In addition, we were 
not able to observe a compelling evidence that previously vali-
dated genetic variants of FPG or T2DM affect longitudinal 
changes in FPG. Even though there were five variants of 
T2DM and three variants of FPG that were nominally associ-
ated with longitudinal change in FPG, they were not significant 
after adjusting for multiple comparison. Our findings suggest 
that the biological mechanisms or the genetic determinants of 
FPG itself or T2DM may be different from that of the longitu-
dinal change in FPG.

When we compare our results with that of the European 
study which investigated nine cohorts to identify genetic vari-
ants association with change in FPG over time, none of the 
variants with suggestive association (P<5.00×10−6) were repli-
cated in our study (P>0.05) [38]. Furthermore, the SNP rs111-
87850 discovered in this study was not replicated in Europeans 
(P=0.769). There may be several reasons for the discrepancy. 
First, the statistical method applied in the two studies were dif-
ferent. We used LMM for each repeated measure, but in the 
European study the longitudinal patterns of FPG were sum-
marized into an individual slope and was analyzed using LM. 
Our research method has the effect of reducing the variance of 
the error term by considering more measurements. In addi-
tion, we adjusted for baseline BMI which might impact longi-
tudinal change in FPG. Second, there could be ethnic differ-
ence in genetic impact and their interaction with environment 
on longitudinal change in FPG. It has been shown that relative 
contribution of β-cell dysfunction and insulin resistance could 
be different between East Asians and Europeans [11]. In addi-
tion, it has been shown that there are ancestry specific variants, 
such as rs2233580 in PAX4, that affect T2DM and related phe-
notypes only in East Asians [39].

The present study has certain limitations. First, as shown in 



Jin H, et al.

264 Diabetes Metab J 2023;47:255-266  https://e-dmj.org

the GCTA analysis, genome-wide SNP interaction with time 
explained only a limited portion of the total variance of the 
longitudinal change in FPG. Considering that only one SNP 
associated with longitudinal change in FPG was detected, and 
four SNPs associated with FPG were identified among many 
previously reported variants, the current sample size may be 
insufficient to elucidate additional SNP interaction with time. 
Second, the two cohorts used in the analysis had subtle differ-
ence in clinical characteristics, regarding age, BMI, FPG at 
baseline, follow-up time, and incidence of T2DM as the KoG-
ES was a community-based cohort and the GENIE was a hos-
pital health checkup cohort in an urban area. For the GENIE 
cohort, FPG measurement interval varied individually and the 
follow-up duration was shorter compared to the KoGES. Nev-
ertheless, the fact that the direction of the effect size of the sug-
gestive variants were all estimated to be the same in both co-
horts means that our results are noteworthy. Third, since the 
genotyping platforms of the two cohorts had different genomic 
coverage for common variants (84.8% for KoGES and 95.4% 
for GENIE), there would have been variants that were not cap-
tured in both cohorts. If we were able to use the most updated 
genotype platform for the two cohorts, more significant vari-
ants affecting the longitudinal change of FPG might have been 
identified.

In conclusion, large-scale longitudinal cohorts in Korean 
population enabled us to investigate loci influencing FPG 
change over time through GWAS-meta analysis with LMM. 
Our study identified one novel genetic association between 
rs11187850 and longitudinal change in FPG. This variant was 
an eQTL for NOC3L expression in T2DM-related tissues such 
as pancreas and adipose. Further studies are required to vali-
date our findings and to understand the details of the biologi-
cal mechanisms underlying this association. Through these ef-
forts, we hope to derive novel insights on preventing progres-
sion of hyperglycemia and development of diabetes. 
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