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Contrast‑enhanced CT‑based 
Radiomics for the Differentiation 
of Anaplastic or Poorly 
Differentiated Thyroid Carcinoma 
from Differentiated Thyroid 
Carcinoma: A Pilot Study
Jayoung Moon 1,3, Jeong Hoon Lee 1,3, Jin Roh 2, Da Hyun Lee 1 & Eun Ju Ha 1*

Differential diagnosis of anaplastic thyroid carcinoma/poorly differentiated thyroid carcinoma 
(ATC/PDTC) from differentiated thyroid carcinoma (DTC) is crucial in patients with large thyroid 
malignancies. This study creates a predictive model using radiomics feature analysis to differentiate 
ATC/PDTC from DTC. We compared the clinicoradiological characteristics and radiomics features 
extracted from a volume of interest on contrast‑enhanced computed tomography (CT) between the 
groups. Estimations of variable importance were performed via modeling using the random forest 
quantile classifier. The diagnostic performance of the model with radiomics features alone had 
the area under the receiver operating characteristic (AUROC) curve value of 0.883. The sensitivity, 
specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were 81.7%, 
93.3%, 97.7%, 64.5%, and 84.6%, respectively, for the differential diagnosis of ATC/PDTC and DTC. 
The model with both radiomics and clinicoradiological information showed the AUROC of 0.908, 
with sensitivity, specificity, PPV, NPV, and accuracy of 82.9%, 97.6%, 99.2%, 67.1%, and 86.5% 
respectively. Distant metastasis, moment, shape, age, and gray‑level size zone matrix features were 
the most useful factors for differential diagnosis. Therefore, we concluded that a radiomics approach 
based on contrast‑enhanced CT features can potentially differentiate ATC/PDTC from DTC in patients 
with large thyroid malignancies.

Anaplastic thyroid carcinoma/poorly differentiated thyroid carcinoma (ATC/PDTC) accounts for only 
1–2%/2–15% of all thyroid malignancies, but over 50%/15% of deaths from thyroid  cancer1–3. Despite modern 
therapies, ATC/PDTC remains a highly aggressive disease and is the main cause of death from thyroid  cancer1–3. 
Since most ATC/PDTCs are considered to arise from the dedifferentiation of differentiated thyroid cancers 
(DTCs), i.e., the transformation of pre-existing papillary thyroid carcinomas (PTCs) or follicular thyroid carci-
nomas (FTCs) into more aggressive histologic types, radiologists should be familiar with the imaging features 
of ATC/PDTCs to avoid delayed  diagnosis1–3.

Radiomics is a quantitative approach to medical imaging aimed at enhancing the data available to clinicians 
using advanced mathematical  analysis4,5. Radiomics derived from the volumetric analysis of a whole tumor on 
contrast-enhanced computed tomography (CT) showed potential for early tumor detection, histologic grading, 
and predicting the recurrence of various head and neck  cancers5–8. Radiomics has shown potential for predicting 
the  BRAFV600E mutation, extrathyroidal extension and recurrence, and cervical lymph node metastasis (LNM) 
in thyroid  cancer9–12. However, no information exists on the potential of radiomics derived from CT to detect 
ATC/PDTC, i.e., to distinguish it from large DTCs, at an early stage. Given the histologic heterogeneity of 
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tumor-harboring thyroid tissue and the dedifferentiation of DTC to ATC/PDTC during the pathogenic process, 
radiomics feature analysis may potentially reveal ATC/PDTC in patients with large  DTCs13,14.

This retrospective study devised a radiomics approach based on CT features extracted from a volume of 
interest (VOI) to detect ATC/PDTC in patients with DTCs > 3.0 cm.

Results
Baseline clinicoradiological characteristics of patients with ATC/PDTC and DTC. The clinical 
and radiological characteristics of the patients with thyroid cancers included in this study are summarized in 
Table 1. The patients with ATC/PDTC (mean age, 60.9 ± 18.7 years: range: 14–85 years) were significantly older 
than those with DTC (mean age, 45.6 ± 15.7 years; range: 18–91 years) (p < 0.001). The sex distribution did not 
differ between the groups (p = 0.377). There were group differences in tumor size, number of lobes with tumor 
involvement, tumor margin, tumor growth pattern, intra-tumoral necrosis, calcification, organ invasion, and 
vascular invasion (all p < 0.05). Among them, the CT characteristics distinguishing ATC/PDTC from PTC were 
tumor size (mean size: 6.1 vs. 4.5 cm, p < 0.001), intra-tumoral necrosis (87.5% vs. 53.4%, p = 0.001), organ inva-
sion (53.1% vs. 15.5%, p < 0.001), and vascular invasion (28.1% vs. 3.4%, p = 0.001). However, number of lobes 
with tumor involvement (p = 0.106), tumor margin (p = 0.379), tumor growth pattern (p = 0.123), and calcifica-
tion (p = 0.257) did not differ between the two groups.

Regarding the lymph node characteristics, the rates of lymph node metastasis (LNM), nodal necrosis, nodal 
calcification, and vascular invasion/encasement were significantly higher in patients with ATC/PDTC (all 
p < 0.05). Among them, the CT characteristics distinguishing ATC/PDTC from PTC were nodal necrosis (53.1% 
vs. 12.1%, p < 0.001) and vascular invasion/encasement (18.8% vs. 1.7%, p = 0.007). However, cervical LNM 
(p = 0.603) and nodal calcification (p = 0.181) rates did not differ between the two groups. Distant metastasis at 
the initial diagnosis was only observed in patients with ATC/PDTC (46.9% vs. 0%, p < 0.001).

Radiomics features extracted from CT scans of patients with ATC/PDTC and DTC. Figure  1 
shows representative values of radiomics features obtained through UMAP. Representative values of the first-
order features, GLDM, GLSZM, histogram, moment, NGTDM, percentile, and shape features significantly 
differed between ATC/PDTC and DTC; the moment, GLSZM, shape, and first-order features differed most 
between the two groups.

Table 2 and Fig. 2 show the diagnostic performance of the model using radiomics features extracted from CTs. 
The prediction model based on radiomic information alone had an area under the receiver operating character-
istic (AUROC) curve of 0.883, with sensitivity, specificity, positive predictive value (PPV), negative predictive 
value (NPV), and accuracy of 81.7%, 93.3%, 97.7%, 64.5%, and 84.6%, respectively, for the differential diagnosis 
of ATC/PDTC and DTC. The AUROCs of the model were 0.858 and 0.887 for the differential diagnosis of ATC/
PDTC with PTC and FTC, respectively.

The value of combined radiomics and clinicoradiological features to distinguish patients with 
ATC/PDTC and DTC. Figure 3 shows the diagnostic performance of the prediction model based on com-
bining radiomics and clinicoradiological information. The combined model showed an AUROC of 0.908, with 
sensitivity, specificity, PPV, NPV, and accuracy of 82.9%, 97.6%, 99.2%, 67.1%, and 86.5%, respectively, for the 
differential diagnosis of ATC/PDTC and DTC. There were no significant differences in the AUROCs between 
the two models. Distant metastasis, moment, shape, age, and GLSZM features differed most between ATC/
PDTC and DTC.

Discussion
This study demonstrated that a radiomics approach based on CT features extracted from a VOI could differen-
tiate ATC/PDTC from DTC in patients with large thyroid malignancies, with an AUROC of 0.883. The model 
combining radiomics and clinicoradiological features had an AUROC of 0.908, with the most useful factors for 
differential diagnosis being distant metastasis, moment, shape, age, and GLSZM features. Image-based modeling 
of tumors with intratumoral heterogeneity combined with a conventional approach has potentials to overcome 
the clinical challenges of diagnosis and treatment planning.

The primary concern in large thyroid malignancies remains DTC, which represents > 90% of all thyroid 
 cancers15. However, the differential diagnosis includes ATC/PDTC, which has a poor prognosis and may require 
a different treatment  strategy1–3. Although sonography can evaluate a thyroid mass, patients with large neck 
masses frequently undergo contrast-enhanced CT for differential  diagnosis15. As survival is improved by early 
multimodal treatments and increased use of head and neck imaging, radiologists must be familiar with the 
imaging features of ATC/PDTC to avoid delayed  diagnosis1–3,16. ATC/PDTC usually presents as a large, hetero-
geneous, solid mass with increased vascularity, extensive necrosis, and local  invasiveness16–18. However, ATC/
PDTC sometimes shows nonspecific or overlapping imaging features with DTCs, especially for American Joint 
Committee on Cancer TNM system stage IVA and resectable stage IVB  disease19. Accurate diagnosis of ATC/
PDTC is possible with fine-needle aspiration in 50–80% of cases; however, false-negatives (atypical, benign, or 
non-diagnostic) and severity underestimation (i.e., cytological diagnosis of malignancy other than ATC/PDTC) 
are common, leading to poor clinical decision-making20. This study found that although conventional clinicora-
diological features including older age, larger tumor size, intra-tumoral/nodal necrosis, and local invasiveness 
provided meaningful information for the differential diagnosis of ATC/PDTC and DTC, they overlapped, espe-
cially ATC/PDTC and PTC. Although nodal metastases occurred in 71.9% of ATC/PDTC patients at diagnosis, 
this was not statistically different from the rate among patients with PTC (63.8%). On the other hand, distant 
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Variables ATC/PDTC (n = 32)

DTC (n = 98)

P-valuePTC (n = 58) FTC (n = 40)

Clinical characteristics

 Age (years, mean ± SD) 60.9 ± 18.7 44.2 ± 15.9 47.8 ± 15.5  < 0.001

   ≥ 55 21 (65.6) 14 (24.1) 27 (67.5)

   < 55 11 (34.4) 44 (75.9) 13 (32.5)

 Sex 0.377

  Female 25 (78.1) 38 (65.5) 30 (75.0 )

  Male 7 (21.9) 20 (34.5) 10 (25.0)

Radiologic characteristics

 Diameter (cm, mean ± SD) 6.1 ± 1.9 4.5 ± 1.4 4.7 ± 1.2  < 0.001

 Location 0.092

  Right lobe 12 (37.5) 30 (51.7) 15 (37.5)

  Left lobe 13 (40.6) 22 (37.9) 23 (57.5)

  Bilateral 7 (21.9) 5 (8.6) 1 (2.5)

  Isthmus 0 (0.0) 1 (1.7) 1 (2.5)

Number of lobes with tumor involvement 0.017

 1 25 (78.1) 53 (91.4) 39 (97.5)

 2 7 (21.9) 5 (8.6) 1 (2.5)

Maximum tumor length (cm) 0.057

   < 4.0 7 (21.9) 25 (43.1) 16 (40.0)

   ≥ 4.0 25 (78.1) 33 (56.9) 24 (60.0)

 Tumor margin 0.005

  Smooth 14 (43.8) 32 (55.2) 40 (100.0)

  Non-smooth 18 (56.3) 26 (44.8) 0 (0.0)

  Tumor growth pattern  < 0.001

  Intra-thyroidal 12 (37.5) 33 (56.9) 40 (100.0)

  Extra-thyroidal 20 (62.5) 25 (43.1) 0 (0.0)

 Intra-tumor necrosis 0.002

  Absent 4 (12.5) 27 (46.6) 14 (35.0)

  Present 28 (87.5) 31 (53.4) 26 (65.0)

 Calcification 0.008

  Absent 9 (28.1) 24 (41.4) 32 (80.0)

  Present 23 (71.9) 34 (58.2) 8 (20.0)

 Organ invasion  < 0.001

  None 15 (46.9) 49 (84.5) 40 (100.0)

  Esophagus/trachea/larynx 17 (53.1) 9 (15.5) 0 (0.0)

 Vascular invasion/encasement  < 0.001

  None 23 (71.9) 56 (96.6) 40 (100.0)

  Carotid/jugular vein 9 (28.1) 2 (3.4) 0 (0.0)

 Lymphadenopathy  < 0.001

  None 9 (28.1) 21 (36.2) 40 (100.0)

  Central (level VI) 5 (15.6) 13 (22.4) 0 (0.0)

  Ipsilateral (level II–V) 12 (37.5) 16 (27.6) 0 (0.0)

  Bilateral (level II–V) 6 (18.8) 8 (13.8) 0 (0.0)

  Retropharyngeal 7 (21.9) 0 (0.0) 0 (0.0)

  Mediastinal 8 (25.0) 1 (1.7) 0 (0.0)

 Nodal necrosis  < 0.001

  Absent 15 (46.9) 51 (87.9) 40 (100.0)

  Present 17 (53.1) 7 (12.1) 0 (0.0)

 Nodal calcification 0.032

  Absent 28 (87.5) 56 (96.6) 40 (100.0)

  Present 4 (12.5) 2 (3.4) 0 (0.0)

 Vascular invasion/encasement 0.001

  Absent 26 (81.3) 57 (98.3) 40 (100.0)

  Present 6 (18.8) 1 (1.7) 0 (0.0)

 Distant metastasis at diagnosis  < 0.001

Continued
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metastases were only present in 46.9% of ATC/PDTC patients upon presentation in this study, with the most 
common location being the lung.

Radiomics involves the extraction of quantitative metrics and radiomics features from medical  images4. CT 
image-based radiomics feature analysis and modeling offer clinically feasible solutions to the challenges posed 
by heterogeneous tissue characteristics and shape, alone or in combination with demographic, histologic, or 
genomic  data5. This study focused on the potential of radiomics approaches to differentiate ATC/PDTC from 
DTC based on the histologic heterogeneity of tumor-harboring thyroid tissue. Through application to CT imag-
ing, radiomics was used to develop models integrating conventional clinicoradiological characteristics with 
quantitative radiomics features, to improve clinical decision-making and treatment planning of large thyroid 
malignancies. Our predictive model using radiomics features alone had an AUROC of 0.883 to detect ATC/
PDTC, while the combined model had an AUROC of 0.908. The moment, GLSZM, and shape were the most 
useful radiomics features for differential diagnosis. The moment and GLSZM provide information on texture 
uniformity/heterogeneity4,5, and these values may serve as markers of intratumoral heterogeneity of the ATC/
PDTC. The shape features provide information on the two- and three-dimensional properties of the tumor. The 
values reflect a more compact, sphere-like appearance of the ATC/PDTC than  DTC4,5.

Although ATC/PDTC has a poor prognosis, in some cases survival can be improved by gross total resec-
tion combined with chemotherapy/targeted therapy and radiation  therapy1. Accurate diagnosis is essential at 
the initial assessment; any unnecessary delay may lead to ATC/PDTC progressing from potentially resectable 
to unresectable and immediately threatening. The prognosis for ATC/PDTC remains poor with standard treat-
ment, and the intratumoral heterogeneity of the tumor characteristics poses many clinical challenges in terms 
of diagnosis and treatment  planning13,21,22. Advanced imaging techniques may help overcome these clinical 
challenges in thyroid oncology. Radiomics or radiogenomic profiling may improve outcomes by allowing for 
more personalized therapies.

This study had some limitations. First, we only included 32 patients with ATC/PDTC due to the low preva-
lence of this  entity1–3. So far, imaging studies in ATC/PDTC patients have been extremely limited. To our knowl-
edge, there have been only three studies on CT images of ATC/PDTC patients published since 2000, reporting 
57, 32, and 10 cases,  respectively16–18. Although the overall number of ATC/PDTC patients is small in this study, 
this is the first study to creates a predictive model using radiomics feature analysis to differentiate ATC/PDTC 
from DTC in patients with large thyroid malignancies. Further studies with larger populations and higher sta-
tistical power are needed to validate our results in a prospective design. Second, delineating cancer boundaries 
when drawing region of interests (ROIs) remains technically challenging. Defining an entire cancer volume 
on CT might be especially complicated for thyroid cancers because of image distortion caused by the contrast 
agent and the relatively low image  resolution6. We delineated cancer boundaries based on consensus but did not 
evaluate interobserver agreement. Further studies using automated tumor segmentation and extraction of CT 
radiomics features are needed in the future. Third, feature repeatability and reproducibility investigations are 
currently limited to a small number of ATC/PDTC cancer populations. Fourth, we tried to differentiate ATC/
PDTC only from DTC > 3.0 cm. The actual prevalence of thyroid cancers > 3.0 cm is relatively low in practice 
due to increased use of imaging studies. In addition, since the minimum size of ATC/PDTC over 10 years in our 
institution (included in this study) was 3.5 cm, we considered that it seems to be appropriate to compare with 
DTC patients over 3.0 cm for differential diagnosis. Fifth, we did not consider several key clinical factors such 
as tumor growth rate or symptoms to differentiate ATC/PDTC from DTC.

In conclusion, a radiomics approach based on contrast-enhanced CT features extracted from a VOI can 
potentially differentiate ATC/PDTC from DTC in patients with large thyroid malignancies.

Materials and methods
Study population. The institutional review board of our hospital reviewed and approved our retrospec-
tive study protocol. Written informed consent was waived because of the retrospective nature of the study. All 
experiments were performed in accordance with relevant guidelines and regulations. We reviewed the medi-
cal records of patients at our institution confirmed as ATC/PDTC between May 2008 and October 2021. We 
enrolled patients who met the following criteria: pathologically proven ATC/PDTC after thyroidectomy or 
biopsy at our institution; and a pretreatment neck contrast-enhanced CT examination. We identified 38 patients 
with ATC/PDTC. After excluding six patients who did not undergo pretreatment neck contrast-enhanced CT, 
or underwent a CT at another hospital or had a severe dental or motion artifact on CT, we finally enrolled 32 
patients (mean age, 60.9 years; range: 14–85 years).

Control subjects with DTCs > 3.0 cm were enrolled during the same study period for comparison. We enrolled 
98 patients with PTCs (n = 58, mean age, 44.2 years; range: 18–91 years) or FTCs (n = 40, mean age, 47.8 years; 

Variables ATC/PDTC (n = 32)

DTC (n = 98)

P-valuePTC (n = 58) FTC (n = 40)

  Absent 17 (53.1) 58 (100.0) 40 (100.0)

  Present 15 (46.9) 0 (0.0) 0 (0.0)

Table 1.  Clinical and radiological characteristics of patients with thyroid cancers. Data in parentheses are 
percentages. ATC/PDTC, anaplastic thyroid carcinoma/poorly differentiated thyroid carcinoma; DTC, 
differentiated thyroid carcinoma; SD, standard deviation.
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Figure 1.  Box and whisker plots of the distribution of the representative values of the radiomics features on CT 
images of patients with ATC/PDTC and DTC (A), and patients with ATC/PDTC, FTC, and PTC (B).
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range: 18–82 years) meeting the following criteria: a pathologically proven PTC or FTC after thyroidectomy; 
tumor size > 3.0 cm; and a pretreatment neck contrast-enhanced CT examination performed at our hospital.

Imaging techniques. All CT images were obtained using 64- to 128-channel multi-detector CT scanners 
(SOMATOM Definition Flash; Siemens Medical Solutions, Cary, NC, USA, or Brilliance; Philips Medical Sys-
tems, Best, Netherlands) with tube voltages of 100 and 120 kVp. Contrast-enhanced CT scanning was performed 
40 s after initiation of an intravenous injection of a 90 mL bolus of iodinated nonionic contrast material (300–
350 mgI/mL) into the right arm, with a subsequent injection of 20–30 mL normal saline for flushing at 3 mL/s 
using an automated injector. Finally, CT images were obtained with 0.5–0.6 mm collimation and reconstructed 
into axial images every 2.0 mm on a 512 × 512  matrix15.

Imaging processing and analysis. Two radiologists (E.J.H. and D.H.L.) with experience in head and 
neck imaging (15 and 7 years, respectively) reviewed the CT images and achieved a consensus. The images were 
evaluated for the following: lobes with tumor involvement (one vs. two lobes); maximal tumor length (< 4.0 
vs. ≥ 4.0 cm); tumor margins (smooth vs. non-smooth); tumor growth pattern (intrathyroidal vs. extrathyroidal 
growth); intra-tumoral necrosis (absent vs. present); calcifications (absent vs. present); organ invasion (esopha-
gus, trachea, larynx, or recurrent laryngeal nerve); and vascular invasion/encasement (carotid artery encase-

Figure 1.  (continued)

Table 2.  Ability of radiomics feature analysis to distinguish ATC/PDTC from DTCs > 3.0 cm based on 
contrast-enhanced CT. Data are percentages. ATC/PDTC, anaplastic thyroid carcinoma/poorly differentiated 
thyroid carcinoma; DTC, differentiated thyroid carcinoma; FTC, follicular thyroid carcinoma; PTC, papillary 
thyroid carcinoma; PPV, positive predictive value; NPV, negative predictive value.

Comparison Sensitivity Specificity PPV NPV Accuracy

ATC/PDTC vs. DTC 81.7 93.3 97.7 64.5 84.6

ATC/PDTC vs. PTC 82.4 88.1 94.0 77.4 84.3

ATC/PDTC vs. FTC 85.0 90.5 92.8 84.6 87.4
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ment, internal jugular vein involvement). Tumor invasion of adjacent critical structures such as the trachea, 
esophagus, and common carotid artery was diagnosed if the tumor was in contact with at least one-half of the 
circumference of these organs, and if the plane between them was  lost16–18. Tumor necrosis was considered 
present when the number of Hounsfield units (HU) was 10–30 and there was no significant difference in the 
number of HU (≤ 5 HU) between the pre-and post-contrast CT images, as determined by ROI  analysis23. Cen-
tral and lateral compartment lymphadenopathy was documented, along with retropharyngeal and mediastinal 
lymphadenopathy. Lateral and central compartment lymphadenopathy was further assessed for calcification, 
necrosis, and vascular invasion/encasement.

Image processing and analysis. Radiomics feature analysis was performed using PyRadiomics in 
A-VIEW software (Coreline Soft; Seoul, Korea; https:// www. corel ineso ft. com/ aview- resea rch-2)24,25. All patients’ 
CT scans were exported into the software, which semi-automatically created three-dimensional VOIs for each 
thyroid cancer. An experienced radiologist (E.J.H.) and two research scientists (E.K. and H.J.Y.) modified the 
VOIs on each axial image and achieved a consensus. For each VOI, 131 texture features were computed in 12 
categories, including shape features (n = 26), first-order statistics features (n = 14), and histogram/percentile/gra-
dient features (n = 17). Second-order statistical features were derived from the gray-level co-occurrence matrix 
(GLCM; n = 22), gray-level dependence matrix (GLDM; n = 14), gray-level run-length-matrix (GLRLM; n = 14), 
gray-level size zone matrix (GLSZM; n = 16), and neighborhood gray-tone difference matrix (NGTDM; n = 5). 
Higher-order statistics features included features from fractal analysis (n = 1) and moment features (n = 2). All 

Figure 2.  Receiver operating characteristic curves illustrating the diagnostic performance (for ATC/PDTC) of 
the models using radiomics alone (A) and the five most important features for distinguishing ATC/PDTC from 
DTC (B).

https://www.corelinesoft.com/aview-research-2)
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features were transformed to the same scale through Z-score normalization. Figure 4 shows the workflow of this 
study.

Statistical analysis. Statistical analyses were performed with R software (v. 4.1.2; R Foundation for Statisti-
cal Computing, Vienna, Austria). We used the Wilcoxon test to compare quantitative texture feature categories. 
Categorical clinical variables were compared using the Fisher’s exact test. Student’s t-test was employed to com-
pare quantitative variables. To obtain representative values of the feature categories, we applied a non-linear 
dimension reduction algorithm, Uniform Manifold Approximation and Projection (UMAP), except in the case 
of the fractal analysis, which was composed of only one  feature26. The discriminative power of the representative 
value of each feature category was evaluated based on geometric means of p-values obtained through group-wise 
comparisons.

The random forest quantile classifier (RFQ) is a machine learning model that solves class imbalance problems 
using a density-based  approach27. We used an RFQ model to differentiate between ATC/PDTC and DTC. We 
used the Ishwaran-Kogalur importance method to quantify feature  importance28,29. Area under the receiver 
operating characteristic (AUROC) curves were constructed from the radiomics features to determine the best 
predictive model and thresholds. The best predictive model was selected based on an AUROC derived via 
fivefold cross-validation. Since group-wise comparisons would result in class imbalance by data partitioning, 
we used a stratified fivefold cross-validation to keep samples for each class balanced as same as in the original 
 percentage30. Hyperparameter tuning was performed with respect to Out-of-Bag error estimate to determine 
the optimal number of variables randomly sampled as candidates in each split and the size of node. The average 
AUROC derived via fivefold cross-validation was obtained from the arithmetic mean of the AUC 31. The ROC 
curve of cross-validation was obtained by calculating the average value based on the true-positive rate and false 

Figure 3.  Receiver operating characteristic curves illustrating the diagnostic performance (for ATC/PDTC) 
of the models using combined features (A) and the five most important features for distinguishing ATC/PDTC 
from DTC (B).
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positive rate for all of threshold points using cutpointr R  package32. The threshold was determined by the highest 
Youden’s J statistic. A p-value < 0.05 was considered statistically significant.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.

Received: 11 October 2022; Accepted: 8 March 2023
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