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Objective: The purpose of this study was to investigate the accuracy of one-step
automated orthodontic diagnosis of skeletodental discrepancies using a convolutional
neural network (CNN) and lateral cephalogram images with different qualities from
nationwide multi-hospitals. Methods: Among 2,174 lateral cephalograms, 1,993
cephalograms from two hospitals were used for training and internal test sets and 181
cephalograms from eight other hospitals were used for an external test set. They were
divided into three classification groups according to anteroposterior skeletal discrepancies
(Class 1, 11, and 111), vertical skeletal discrepancies (normodivergent, hypodivergent,
and hyperdivergent patterns), and vertical dental discrepancies (normal overbite,
deep bite, and open bite) as a gold standard. Pre-trained DenseNet-169 was used as
a CNN classifier model. Diagnostic performance was evaluated by receiver operating
characteristic (ROC) analysis, t-stochastic neighbor embedding (t-SNE), and gradient-
weighted class activation mapping (Grad-CAM). Results: In the ROC analysis, the mean
area under the curve and the mean accuracy of all classifications were high with both
internal and external test sets (all, > 0.89 and > 0.80). In the t-SNE analysis, our model
succeeded in creating good separation between three classification groups. Grad-CAM
figures showed differences in the location and size of the focus areas between three
classification groups in each diagnosis. Conclusions: Since the accuracy of our model
was validated with both internal and external test sets, it shows the possible usefulness
of a one-step automated orthodontic diagnosis tool using a CNN model. However, it still
needs technical improvement in terms of classifying vertical dental discrepancies.
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INTRODUCTION

Accurate positioning of cephalometric landmarks is
one of the most important steps in successful cephalo-
metric analyses. Since the location and visibility of some
anatomic landmarks are highly influenced by superimpo-
sition of the anatomical structures in the face between
the right and left sides,"” it is not easy to identify these
anatomic landmarks consistently and accurately.

For the last several decades, clinicians have manually
indicated the cephalometric landmarks and measured
several angles and distances between these landmarks
to assess dentofacial deformities.” Although this manual
cephalometric analysis has been substituted with digital
cephalometric analysis,"* the process is still laborious,
time-consuming, and sometimes inaccurate in detection
of cephalometric landmarks.”**

Recently, research on automatic detection of cepha-
lometric landmarks using artificial intelligence (Al)
with convolutional neural networks (CNNs) has gained
popularity.' """ These studies have focused mainly on
automatic detection of cephalometric landmarks and
reported that most cephalometric landmarks were de-
tected within a 2-mm range of accuracy."'® However,
these approaches still require further measurements of
cephalometric parameters including distance, angle, and
ratio. Although Kunz et al." developed an Al algorithm
to analyze 12 cephalometric parameters, they did not
make a one-step automated orthodontic diagnosis tool
in practice. Therefore, it is necessary to develop a one-
step automated orthodontic diagnosis algorithm based
on a CNN to avoid the need of additional measurements

of cephalometric parameters.

In terms of a one-step CNN algorithm for classifica-
tion of skeletal discrepancies, Yu et al.® reported > 90%
accuracy, sensitivity, and specificity for diagnosis of the
sagittal and vertical skeletal discrepancies in three mod-
els (Models 1, 11, and 111). However, they intentionally
excluded some portion of the data adjacent to the clas-
sification cutoff with intervals of 0.2 standard deviations
(SDs) in Model 11 and 0.3 SDs in Model 111 in the test
set.®> As a result, Models 11 and 111 showed a significant
increase in the values for accuracy, sensitivity, and speci-
ficity compared to Model 1.°

The major limitations in previous studies can be sum-
marized as follows:'>*" (1) Most studies used lateral
cephalograms from only one or two hospitals, not from
nationwide several different hospitals which had differ-
ent machine types, radiation exposure conditions, sen-
sors, and image conditions; (2) No study has simultane-
ously reported dental and skeletal discrepancies using a
one-step automated classification algorithm; and (3) 1f
some portion of the data adjacent to the classification
cutoff were excluded in the test set, there would be is-
sues in the continuity of the test set and an exaggerated
increase in accuracy. Therefore, the purpose of this study
was to investigate the accuracy of a novel one-step
automated orthodontic diagnosis model for determin-
ing anteroposterior skeletal discrepancies (APSDs: Class
1, Class 11, and Class 111), vertical skeletal discrepancies
(VSDs: normodivergent, hyperdivergent, and hypodiver-
gent), and vertical dental discrepancies (VDDs: normal
overbite, open bite, and deep bite) using a CNN and
lateral cephalogram images with different qualities from

between 2013 and 2020
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patients (1) who
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nationwide 10 unrelated dental hospitals in Korea.

MATERIALS AND METHODS

Description of the dataset

A total of 2,174 lateral cephalogram images were
retrospectively obtained from the Departments of Or-
thodontics in nationwide 10 hospitals including Seoul
National University Hospital (SNUDH), Kooalldam
Dental Hospital (KADH), Ajou University Dental Hos-
pital (AJUDH), Asan Medical Center (AMC), Chonnam
National University Dental Hospital (CNUDH), Chosun
University Dental Hospital (CSUDH), Ewha University
Medical Center (EUMC), Kyung Hee University Dental
Hospital (KHUDH), Kyungpook National University Den-
tal Hospital (KNUDH), and Wonkwang University Dental
Hospital (WKUDH) in Korea. The inclusion criteria were
Korean adult patients who underwent orthodontic treat-
ment with/without orthognathic surgery between 2013
and 2020. The exclusion criteria were (1) patients who
were in childhood and adolescence and (2) patients
who had mixed dentition. All datasets were strictly
anonymized before use. The study protocol was re-
viewed and approved by the Institutional Review Board
of SNUDH (ER120022), Korean National Institute for
Bioethics Policy for KADH (P01-202010-21-020), Ajou
University Hospital Human Research Protection Center
(AJIRB-MED-MDB-19-039), AMC (2019-0927), CNUDH
(CNUDH-2019-004), CSUDH (CUDHIRB 1901 005),
EUMC (EUMC 2019-04-017-003), KHUDH (D19-007-
003), KNUDH (KNUDH-2019-03-02-00), and WKUDH
(WKDIRB201903-01).

Lateral cephalogram images, 1,993 from two hospitals,
were used for the training set (n = 1,522) and internal
test set (n = 471), and 181 from eight other hospitals
were used as the external test set to validate our model
(Figure 1). Table 1 summarizes information on the prod-
uct, radiation exposure condition, sensor, and image
conditions in each hospital, which showed diverse con-
ditions.

Setting a gold standard for the diagnosis of APSDs,
VSDs, and VDDs

After detection of the cephalometric landmarks in-
cluding A point, nasion, B point, orbitale, porion, go-
nion, menton, sella, maxilla 1 crown, maxilla 6 distal,
mandible 1 crown, and mandible 6 distal by a single
operator (SY), the cephalometric parameters including A
point-Nasion-B point (ANB) angle, Frankfort mandibu-
lar plane angle (FMA), Jarabak’s posterior/anterior facial
height ratio (FHR), and overbite were calculated using V-
Ceph 8.0 (Osstem, Seoul, Korea) to set a gold standard.

All cephalometric images were classified into the three
classification groups by a single operator (SY) as follows.
For classification of APSDs, we defined the ANB value
between -1 SD and 1 SD from the ethnic norm of each
sex'” as skeletal Class 1; > 1 SD as skeletal Class 11; and <
-1 SD as skeletal Class 1lI. For classification of VSDs, we
combined FMA and FHR values from the ethnic norm
of each sex'” for training. First, we normalized the FMA
and FHR values by using the SD values. Second, the FHR
values were flipped due to an opposite sign compared
to the FMA values. Third, the values of FMA and flipped
FHR were added because each are regarded as having
equal weights. Fourth, the mean and SD values were
obtained for classification into three groups. Then, we
defined the values between -1 SD and 1 SD from the
mean as normodivergent pattern, > 1 SD as hyperdiver-
gent pattern, and < -1 SD as hypodivergent pattern. For
classification of the VDDs, we defined the overbite value
between O mm and 3 mm as a normal overbite, > 3 mm
as a deep bite, and < 0 mm as an open bite (Tables 2
and 3).

To assess intra-examiner reliability, all classifications
of APSDs, VSDs, and VDDs were performed again af-
ter one month by the same investigator (SY). Since the
minimum sample size"’ was suggested as 49 from a 3 x
3 Cohen’s kappa agreement test, 100 images were ran-
domly selected to classify APSDs, VSDs, and VDDs. Co-
hen’s kappa agreement test showed an “almost perfect”
agreement (kappa value; 0.939 for APSDs, 0.984 for
VSDs, and 0.907 for VDDs).'* Therefore, the first classifi-
cation results were used for further statistical analysis.

Table 2. Classification criteria for the anteroposterior skeletal discrepancies (APSDs), vertical skeletal discrepancies (VSDs),
and vertical dental discrepancies (VDDs) for orthodontic analysis

APSDs VSDs VDDs
Sex ANB FMA FHR Overbite
Mean SD Mean SD Mean SD Mean SD
Female 2.4 1.8 24.2 4.6 65 9
Male 1.78 2.02 26.78 1.79 66.37 5.07 1o 1

ANB, angle among A point, nasion, and B point; FMA Frankfort mandibular plane angle; FHR, Jarabak’s posterior/anterior

facial height ratio; SD, standard deviation,
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To evaluate inter-examiner reliability, the same im-
ages used to assess intra-examiner reliability were se-
lected. Classifications of APSDs, VSDs, and VDDs were
performed by the other investigator (KL). Cohen’s kappa
agreement test showed an “almost perfect” agreement
for APSDs and VSDs (kappa value; 0.985 for APSDs,
0.919 for VSDs) and “substantial’ agreement” for VDDs
(0.601)."

Preprocessing of the data

Augmentation techniques including cropping, pad-
ding, spatial transformations, and appearance transfor-
mation were conducted in real time.

Model architecture (Figure 2)

As the backbone of the model, DenseNet-169 pre-
trained with weights of the ITmageNet dataset was used
with group normalization (GN)."””° After the global aver-
age pooling (GAP) of the backbone, ArcFace was added
in parallel with the softmax layer in order to overcome
imbalanced data sets and obtain discriminative features
during training.”

After training, the ArcFace head was removed, and
inference was implemented using only the softmax layer
as a basic CNN classifier. Because sex was included as a
classification criterion of APSDs and VSDs, the one-hot
vector about sex was concatenated with the feature vec-
tor after GAP.

Model training (Figures 1 and 2)

Training for APSDs, VSDs, and VDDs was performed
using only a gold standard determined by a single op-
erator (SY), not by measurement of cephalometric pa-
rameters including ANB, FMA, FHR, and overbite.

Model testing

After training was completed, one-step classifica-
tion was performed with both the internal and external
test sets to validate the performance of the constructed
model. 1t took 55 seconds (sec) to diagnose the internal

Softmax
————>

ArcFace
—

Training

test set (0.1168 sec per lateral cephalogram) and 22 sec
to diagnose the external test set (0.1215 sec per lateral
cephalogram). The results for the internal and external
test sets were compared with gold standard diagnostic
data.

Analysis method

Receiver operating characteristic (ROC) analysis

The performance of our model was evaluated using
accuracy, area under the curve (AUC), sensitivity, and
specificity using both binary and multiple class ROC
analysis.*”*”

t-stochastic neighbor embedding (t-SNE)

Since this technique can visualize high-dimensional
data by giving each datapoint a location in a two or
three-dimensional map, it was used to check the feature
distribution of the training set, internal test set, and
external test set after GAP layering.”* In each diagnosis,
the labels of ground truth (GT) and prediction (PD) were
set to check the distribution of each data set.

Gradient-weighted class activation mapping (Grad-
CAM}25

As this technique can produce visual explanations of
Al models, it can show the regions where the Al focuses
for PD. 1t was used to confirm the regions where our
model mainly focused on the diagnosis of APSDs, VSDs,
and VDDs.

RESULTS

Metrology distribution of the APSDs, VSDs, and VDDs
per dataset (Figure 3)

The continuity of the dataset between the normal
groups (Class 1 in APSDs, normodivergent pattern in
VSDs, and normal overbite in VDDs) and the other two
groups (Class 11 and 111 in APSDs, hyperdivergent and
hypodivergent patterns in VSDs, and open bite and deep

Softmax m
e

Inference

Figure 2. Diagrams of the model architecture. A, During training, an ArcFace head was added to the last convolutional
layer of the backbone in parallel with the softmax layer. B, After training, the ArcFace head was removed and inference

was implemented using only the softmax layer.
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Figure 3. Metrology distribution of the anteroposterior skeletal discrepancies (APSDs: Class I, Class Il, and Class Il),
vertical skeletal discrepancies (VSDs: normodivergent pattern, hyperdivergent pattern, and hypodivergent pattern), and
vertical dental discrepancies (VDDs: normal overbite, open bite, and deep bite) per dataset. Red lines in APSDs and VSDs
indicate one standard deviation of the normal classification. Red lines in VDDs indicate the boundary values, which were

0 mm and 3 mm.

ANB, angle among A point, nasion, and B point; FMA, Frankfort mandibular plane angle; FHR, Jarabak's posterior/ante-
rior facial height ratio; norm, normalized; Man, mandible 1 crown; Max, maxilla 1 crown; dist, distance.

bite in VDDs) was confirmed.

Accuracy and AUC of the internal test set in binary
ROC analysis (Table 4 and Figure 4)

In APSDs, Class 111 had the highest accuracy and AUC
(0.9372 and 0.9807, respectively), followed by Class 11
(0.8972 and 0.9533, respectively) and Class 1 (0.8488
and 0.9212, respectively). In VSDs, hypodivergent pat-
tern had the highest accuracy and AUC (0.9346 and
0.9824, respectively), followed by hyperdivergent pattern
(0.9019 and 0.9730, respectively) and normodivergent
pattern (0.8365 and 0.9186, respectively). In VDDs, open

www.e-kjo.org https://doi.org/10.4041/kjod.2022.52.1.3

bite had the highest accuracy and AUC (0.8730 and
0.9475, respectively), followed by deep bite (0.8637 and
0.9286, respectively) and normal overbite (0.7376 and
0.8177, respectively).

In APSDs and VSDs, the total accuracy reached nearly
0.9 and the total AUC exceeded 0.95 (0.9517 and 0.9580,
respectively). However, VDDs showed a relatively lower
total accuracy (0.8248 vs. 0.8944 and 0.8910) and total
AUC (0.8979 vs. 0.9517 and 0.9580) than APSDs and
VSDs.
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Figure 4. The results of the binary receiver operating characteristic curve analysis (A) in the internal test set from two
hospitals and (B) in the external test set from other 8 hospitals for diagnosis of anteroposterior skeletal discrepancies
(APSDs), vertical skeletal discrepancies (VSDs), and vertical dental discrepancies (VDDs).

AUC, area under the curve.

Accuracy and AUC of the external test set in binary
ROC analysis (Table 4 and Figure 4)

In APSDs, Class 111 had the highest accuracy and AUC
(0.9525 and 0.9930, respectively), followed by Class 11
(0.8796 and 0.9601, respectively) and Class 1 (0.8320
and 0.9042, respectively). In VDDs, open bite had the
highest accuracy and AUC (0.8917 and 0.9626, re-
spectively), followed by deep bite (0.8586 and 0.9238,
respectively) and normal overbite (0.7591 and 0.8359,
respectively). However, VSDs showed a different pattern
between accuracy and AUC. Although the accuracy was
highest for hypodivergent pattern (0.9094), followed
by hyperdivergent pattern (0.9061) and normodivergent
pattern (0.8309), the AUC was highest for hyperdiver-
gent pattern (0.9730), followed by hypodivergent pat-
tern (0.9684) and normodivergent pattern (0.9157).

In APSDs and VSDs, the total accuracy reached nearly
0.9 and the total AUC exceeded 0.95. However, VDDs
showed a relatively lower total accuracy (0.8365 vs.
0.8880 and 0.8821) and total AUC (0.9074 vs. 0.9524
and 0.9523) than APSDs and VSDs.

www.e-kjo.org https://doi.org/10.4041/kjod.2022.52.1.3

Comparison of AUC values between internal and
external test sets in binary ROC analysis (Table 4)

In APSDs and VSDs, Class 111 and open bite showed
the highest AUC compared to other classifications
(0.9807 and 0.9903 in the internal test set, 0.9475 and
0.9626 in external test set, respectively). However, VSDs
showed a different pattern. The internal test set showed
the highest AUC for hypodivergent pattern (0.9824),
while the external test set showed the highest AUC for
hyperdivergent pattern (0.9730). However, the difference
in the AUC values was less than 0.01.

Comparison of AUC values between internal and
external test sets in multiple ROC analysis (Table 5)

In terms of pairwise AUCs in the internal and ex-
ternal test sets of APSDs, VSDs, and VDDs, Class 11
vs. Class 1M1 ([11—111, 0.9913; 11«11, 0.9920]; [11—111,
0.9992; 11<111, 0.9989]; A value [11—I111, 0.0079;
11111, 0.0069]), hyperdivergent pattern vs. hypodi-
vergent pattern ([hyper—hypo, 0.9998; hyper<hypo,
0.9998]; [hyper—hypo, 0.9930; hyper<hypo, 0.9977];
A value [hyper—hypo, -0.0068; hyper<hypo,

11
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-0.0021]), and open bite vs. deep bite ([open—deep,
0.9982; open<«deep, 0.9951]; [open—deep, 0.9924;
open«<deep, 0.9956]; A value [open—deep, —-0.0058;
open<«—deep, 0.0005]) showed the highest values in both
the internal and external test sets and the smallest dif-
ferences compared to other pairwise classifications.

t-SNE of APSDs, VSDs, and VDDs per dataset (Figure 5)

The GT in the training set, internal test set, and exter-
nal test set showed that dots with different colors were
mixed irregularly in the classification cutoff areas (dotted
circle in Figure 5, GT) between the normal group (Class
11in APSDs, normodivergent pattern in VSDs, and normal
overbite in VDDs) and the other two groups (Class 11 and

Kjo-

111 for APSDs, hyperdivergent and hypodivergent patterns
for VSDs, and open bite and deep bite for VDDs).

However, in the Al PD, the areas with irregular mixing
had almost disappeared enough to indicate a cutoff line
between the normal group and the other two groups in
the training set, internal test set, and external test set
(Figure 5, PD). This indicated that our model succeeded
in creating good separation between the three classifi-
cation groups in each diagnosis, resulting in consistent
classification within each group.

Grad-CAM for each diagnosis (Figure 6)
Heat maps show differences in the location and size
of the focus areas between three classification groups in

Training set Internal test set External test set
,"/- e -
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APSDs

VSDs

VDDs

Open bite

Normal overbite

Deep bite

Figure 6. Gradient-weighted class activation mapping plots for anteroposterior skeletal discrepancies (APSDs), vertical
skeletal discrepancies (VSDs), and vertical dental discrepancies (VDDs).

each diagnosis. These indicate that our model can ef-
fectively use the information in the lateral cephalogram
images.

DISCUSSION

The present study has some meaningful outcomes
as follows: (1) Despite the different quality of lateral
cephalogram images from diverse conditions of cepha-
lometric radiograph systems in nationwide 10 hospitals
(Table 1), a clinically acceptable accuracy of diagnosis
was obtained for APSDs, VSDs, and VDDs; and (2) since
it was possible to give a proper diagnosis for APSDs,
VSDs, and VDDs with input of lateral cephalograms only,
our model showed the possibility of general-purpose
one-step orthodontic diagnosis tool.

Clinical meaning of the comparison results between
internal and external test sets in binary and multiple
ROC analysis

Since the differences in AUC values for APSDs, VSDs,
and VDDs in both binary and multiple ROC analyses
were almost insignificant (Tables 4 and 5), it could be
regarded that our model was well-validated in the exter-
nal test set.

14

Comparison of accuracy with a previous study using
binary ROC analysis results

Compared to model 1 of Yu et al.,” our model showed
slightly lower scores for total accuracy (< 0.011) and
slightly higher scores for total AUC (< 0.020) (Table 6).
Although our dataset had some disadvantages including
a relatively smaller number of images in the dataset and
an imbalanced data set compared to Yu et al’s study’
(n = 5,890 lateral cephalogram images, and even dis-
tribution of data set after under-sampling), our model
exhibited nearly the same performance as model 1 by Yu
et al.® To overcome this disadvantageous environment,
we elaborated on constructing the proper architecture of
our model using GN, ArcFace, and a softmax layer (Figure
2).

Excluding specific data, especially in the test set, may
increase the risk of sample selection bias and lead to in-
accurate validation of the model. Therefore, in the pres-
ent study, all datasets with a whole distribution were
included to properly validate the model (Figure 3).

Difference in the AUC values of in Class Il and Class Il
groups in APSDs and hyperdivergent and hypodivergent
groups in VSDs in binary and multiple ROC analysis

The hypodivergent group showed a higher AUC score
than the hyperdivergent group in the internal test set,
while the hyperdivergent group showed a higher AUC

https://doi.org/10.4041/kjod.2022.52.1.3 www.e-kjo.org
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This
study
0.9580

AUC

Yuetal’s
study®

VSDs
Accuracy
Yuetal’s This
study study’ study
0.8951 0.8910

Specificity
Yuetal’'s This
study®

Sensitivity
study
0.8427 0.8461

Yuetal’s This
study®

AUC
Yuetal's This
study’ study
0.9517

Accuracy
Yuetal’'s This
study’ study
0.9050 0.8944

APSDs
Specificity
Yuetal’'s This
study’ study
0.9288 0.9206

Sensitivity
study
0.8575 0.8414

Yuetal's This
study®

Models

Table 6. Comparison of the binary ROC analysis results between multi-models in a previous study and a single model in this study
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than the hypodivergent group in the external test set
(0.9824 vs. 0.9730 in the internal test set, respectively;
0.9684 vs. 0.9730 in the external test set, respectively;
Table 4).

The Class 111 group showed higher AUC values than
the Class 11 group, which was in accordance with the re-
sults of Yu et al.” for both internal and external test sets
(0.9807 vs. 0.9533 in the internal test set, respectively;
0.9930 vs. 0.9601 in the external test set, respectively;
Table 4). The reason might be a difference in the loca-
tion and size of the focus areas in the diagnosis of VSDs
and APSDs (i.e., relatively larger difference between Class
11 and Class 111 groups compared to between the hyper-
divergent and hypodivergent groups; Figure 6). Further
studies are necessary to investigate the reason why the
Class 111 group showed a higher AUC than the Class 11

group.

Lower AUC values in VDDs compared to APSDs and
VSDs in binary ROC analysis

The Tower AUCs in VDDs in both internal and exter-
nal test sets (Table 4) and relatively unclear separation
of the normal overbite group from the deep bite and
open bite groups in the GT of the t-SNE result (Figure
5) might be due to two reasons: (1) the imbalanced
data composition in the training set, internal test set,
and external test set (normal overbite, 61.3%, 52.9%
and 43.6%; open bite, 26.5%, 29.7% and 28.2%; deep
bite, 12.2%, 17.4% and 28.2%, respectively; Table 3) or
(2) an inherent problem in the superimposed image be-
tween the anterior teeth.

Current status of CNN-based orthodontic diagnosis

Most previous CNN studies have focused on detecting
cephalometric landmarks and/or calculating cephalomet-
ric variables for a two-step automated diagnosis.'”*"
The study design, methods, and results of previous CNN
studies are summarized in Table 7. In the present study,
we proposed a one-step orthodontic diagnosis model,
which only needs input of lateral cephalograms. The de-
gree of performance of the Al model used in this study
was comparable to the human gold standard (Tables 4
and 5). Automated Al-assisted procedures might save
clinicians valuable time and labor in classification of
skeletodental characteristics in a large sample size. How-
ever, it still needs an ultimate decision from a human
expert, especially in borderline cases.

Limitations of this study and suggestions for future
studies

The present study has some limitations. First, this
study had a relative imbalance in the data sets of some
centers. Second, more demographic, clinical, and cepha-
lometric parameters should be included in setting the
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gold standard and training Al models in future studies.

As suggestions for future studies, it is necessary to de-
velop a one-step automated classification algorithm for
diagnosis of transverse and asymmetry problems. Pro-
spective studies with larger diagnostic cohort data sets
will allow more robust validation of the model.

CONCLUSION

® The accuracy of our model was well-validated with
internal test sets from two hospitals as well as external
test sets from eight other hospitals without issues re-
garding the continuity of the data sets or exaggerated
accuracy.

® OQur model shows the possible usefulness of a one-
step automated orthodontic diagnosis tool for clas-
sifying skeletal and dental discrepancies with input of
lateral cephalograms only in an end-to-end manner.
However, it still needs technical improvement in terms of
classifying VDDs.
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