
I. Introduction

An electrocardiogram (ECG) records cardiac activity and 
is commonly scheduled by cardiologists. ECGs detect ar-
rhythmic events [1], measure heart rate variability [2], pre-
dict myocardial infarction [3], and screen for contractile 
dysfunction [4]. In intensive care units (ICUs), ECGs are 
collected in real time and used to guide treatment. ECGs can 
now be obtained using wearable devices, and biosignals are 
increasingly used to monitor health [5]. Many studies have 
used ECGs to this end. Most studies have used summary 
data, such as heartbeats/min or R peak intervals. Many stud-
ies have also subjected ECG waveform data to deep learning. 
Attia et al. [1] showed that deep learning of only normal si-
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nus rhythms predicted arrhythmic events in 10,000 patients. 
	 However, most individual researchers lack the quantity of 
labeled ECG waveform data required for model training. 
Transfer learning solves this problem [6]; pretrained neural 
network weights derived for a different dataset are used to 
fine-tune the weights for the new task. This increases model 
accuracy, allowing model training with fewer data [7]. Trans-
fer learning using a small dataset has been conducted to 
facilitate medical image analysis [8]. However, most experi-
ments have involved image or language analysis [9], whereas 
the biosignal domain has received little attention. Some 
studies have tried to pretrain models using labelled data 
from a different domain and transfer its knowledge to the 
target ECG domain. Van Steenkiste et al. [10] utilized trans-
fer learning to adopt human ECG knowledge to a horse ECG 
model, because horse ECG data was difficult to collect. Some 
studies have tried to adopt image domain knowledge in 
the ECG domain using transfer learning and have achieved 
good performance [11–13]. Because a pretrained model was 
trained to classify the ImageNet dataset, which was totally 
different from the ECG domain, these studies had to convert 
one-dimensional (1D) signal to two-dimensional (2D) im-
ages. If there is a pretrained model for the ECG domain, a 
2D transformation process may not be needed, and there is a 
possibility that the performance will be improved.
	 Even when using transfer learning, researchers may lack 
adequate labeled data for a pretraining model. Thus, many 
studies have sought to apply the unsupervised learning of 
unlabeled data to transfer learning. A model is pretrained 
using unlabeled big data, and the weights are then employed 
to solve a new problem associated with only a small labeled 
dataset. An autoencoder engages in unsupervised transfer 
learning. Wen et al. [14] classified faults using a sparse auto-
encoder that employs transfer learning. Wang et al. [15] de-
veloped an automated chest-screening model using transfer 
learning and a convolutional, sparse denoising autoencoder. 
Eduardo et al. [16] utilized an autoencoder and transfer 
learning to develop an individual identification model. 
	 In this work, we explored whether transfer learning facili-
tates biosignal analysis and the influence of the biosignal da-
tasets. We hypothesized that transfer learning would enhance 
model performance and reliability. We gradually reduced 
the size of the labeled datasets when examining the utility of 
transfer learning in a data-starved environment. We trained 
a convolutional autoencoder (CAE) using an unlabeled ECG 
database of Ajou University Medical Center (AUMC) [17] 
and re-used the CAE weights to classify 11 ECG rhythms of 
a dataset from a Shaoxing Hospital [18]. Transfer learning 

rendered the model robust, particularly when the labeled 
dataset was small. This is the first study to utilize unlabeled 
ICU ECG big data from over 25,000 patients for transfer 
learning in biosignal analysis and to make a pretrained ECG 
model and its weights available to the public. 

II. Methods

The study was approved by the Ajou University Hospital In-
stitutional Review Board (No. YYIRB-DEV-MDB-18-497). 
The requirement for informed consent was waived given the 
retrospective nature of the work. The study proceeded in 
three phases (Figure 1). First, we collected two ECG datasets 
(a raw-waveform unlabeled database from the AUMC ICU 
and a 12-lead ECG dataset from the Shaoxing People’s Hos-
pital of China) labeled in terms of 11 ECG rhythms by two 
physicians. We then trained the CAE using the AUMC ICU 
dataset, as described below. Subsequently, we classified the 
11 ECG rhythms using the Shaoxing dataset. When train-
ing the classifier, we re-used the earlier weights (i.e., transfer 
learning) and also conducted random weight initialization; 
then the results were compared.

1. Data Sources
We used two ECG datasets. The AUMC ICU biosignal data-
base was established on September 1, 2016, and it contains 
information on 26,481 South Korean patients (to May 10, 
2020); the Shaoxing dataset contains 12-lead ECG informa-
tion on 10,646 patients of the Shaoxing People’s Hospital of 
China. The AUMC ICU monitored patients using Nihon 
Kohden and Philips devices. One device yields numerical 
data (heartbeats/min, mean blood pressure/min, and respi-
ratory rate/min), and the other device produces waveform 
data including ECGs, photoplethysmograms, and arterial 
blood pressure readings. 
	 We randomly extracted 100 samples of 8.2-second-long 
ECG lead II data for each patient. We used a total of 2,648,100 
ECG data samples and divided them into training and test 
datasets in an 8:2 ratio. The Shaoxing dataset consists of 
10-second-long 12-lead ECGs collected using the MUSE 
system of GE Healthcare. All samples were labeled by a li-
censed physician, and another licensed physician validated 
the labels. Only the 10-second-long ECG lead II data were 
used for classification, with or without transfer learning. The 
Shaoxing dataset includes 11 types of ECG rhythms (normal 
sinus rhythms, sinus irregularities, sinus bradycardias, sinus 
tachycardias, supraventricular tachycardias, atrial tachycar-
dias, sinus atrium-to-atrial wandering rhythms, atrioventric-
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ular node re-entrant tachycardias, atrioventricular re-entrant 
tachycardias, atrial fibrillations, and atrial flutters).

2. Data Preprocessing
To form the AUMC biosignal dataset, ECGs were collected 
at 250 Hz by the Nihon Kohden monitors and at 500 Hz by 
the Philips devices. The Shaoxing ECG data were collected 
at 500 Hz. To standardize the sampling rate to 250 Hz, the 
500-Hz ECG data were downsampled to 250 Hz. Baseline 
wandering noise was removed via Butterworth filtering. We 
used 8.2-second-long ECG data samples to ensure that each 
recording featured 2,048 data points. 

3. Model Development
1) Convolutional autoencoder
An autoencoder (AE) [19,20] engages in unsupervised deep 
learning when extracting features. An AE features an en-
coder and a decoder. The encoder is trained to extract ECG 
features into small vectors, and the decoder is trained to con-
vert the vectors into outputs close to the original ECG data. 
It is assumed that the decoder outputs resemble the original 
data; an optimal encoder extracts ECG features well. An AE 

seeks to reduce the reconstruction error between the original 
ECG data and the reconstructed output. The mean squared 
error (MSE) of reconstruction was calculated. A CAE has a 
similar architecture, but both the encoder and decoder are 
convolutional neural networks (CNNs) [21]. Because ECG 
data are one-dimensional, the CNNs of a CAE are also one-
dimensional. 

Z = Encoder (X)
X' = Decoder (Z)

MSE = ∑ 2048
i (Xi - X'i)

2

where
X: original ECG data;
Z: feature vector;
X': reconstructed ECG data;
Xi: the ith value of an original ECG datum (X);
X'i: the ith value of the reconstructed ECG datum (X').

	 Our encoder consists of nine residual blocks containing 
two CNN layers, a ReLU (Rectified Linear Unit) activation 
function, and two batch normalization layers. The CNN 
layer filter sizes and strides were 19 and 1, respectively. The 
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number of encoder-extracted features was set to 60. The de-
coder was of the same structure but used transposed rather 
than simple CNN layers (Figure 2A).

2) Proposed transfer learning strategy
Transfer learning applies the weights of a pretrained model 
to a model that is to perform a different task. We first 
trained the CAE using ECG data from the AUMC biosignal 
dataset. Then, we classified the ECG rhythms and compared 
the performance of a classifier with weighting initialization 
using the CAE encoder (transfer learning) and a classifier 
with random weight initialization (no transfer learning) 
(Figure 2A). During classifier training, the number of train-
ing epochs, the learning rate, the training dataset, and the 
optimizer were all identical; only the weighting initialization 
differed. 

3) Comparison with another transfer learning strategy
To show that our approach is an effective transfer learning 
strategy using a model that has been pretrained with big 
data of ICU biosignal ECGs, we compared the classification 
performance of our approach and another approach that was 
suggested in previous works [14–16]. They converted 1D 
ECG data into 2D image data as spectrograms and tried to 
analyze them in the 2D image domain. They utilized a mod-
el that was pretrained using an ImageNet dataset containing 
4 million images for 200 categories [22], as a feature extrac-
tor. As in that previous work, we converted all ECG data in 
the Shaoxing dataset into 2D spectrogram images and used 
pretrained GoogleNet [23], which was fixed and utilized as 
a feature extractor. The classifier was trained and finetuned 
using features from the pretrained GoogleNet (Figure 2B). 
All experiment settings and hyperparameters were identical 
with our approach. 

4. Evaluation
1) Evaluation of the CAE
The CAE performance was evaluated by calculating the 
mean reconstruction errors; smaller values indicated better 
performance. During AE training, the model performance 
was evaluated using a test dataset during each epoch, and 
training was stopped early when no performance improve-
ment was evident.

2) Evaluation of ECG rhythm classification
ECG rhythm classifications were evaluated according to the 
weighted F1-score. Each classification task was repeated 10 
times using a bootstrapping method. The results are pre-

sented as means with standard deviations [24]. The classi-
fier was trained for 150 epochs. We employed the ADAM 
optimizer [25], and the learning rate was 0.005. Welch’s t-test 
confirmed that the two results differed (p < 0.05).

Accuracy = (True Positive + True Negative)/ 
(Total number of data)

Precision = (True Positive)/(True Positive + False Positive)
Recall = (True Positive)/(True Positive + False Negative)
f1-score = 2 * (Precision * Recall)/(Precision + Recall)

Weighted f1-score = ∑ k
i=1 wi * f1-scorei  

where
i: index of class;
wi: the proportion of the class among all classes;
k: the number of classes.

3) Evaluation of learning curves
We believed that a good learning curve would exhibit con-
tinuous performance improvements, and that a high perfor-
mance metric would be ultimately attained. We thus defined 
a new metric that we termed the learning curve index (LCI): 

LCI = ( mean pos
mean neg + ε

) * best f1-score

where
pos: positive change in the F1-score of the test dataset for 
each epoch;
neg: negative change in the F1-score of the test dataset for 
each epoch;
ε: the smallest value for avoiding infinity when the mean 
negative value is zero.

	 Because the learning curve increased steadily without 
decreasing, the LCI became larger. In Figure 3B, the blue 
learning curve was better than the green learning curve. To 
ensure that the green curve scored lower, the best F1-scores 
obtained during training were multiplied. 

4) Data starvation 
To confirm that transfer learning became more effective as 
the dataset size was reduced, we compared the performance 
of models based on transfer learning or random initializa-
tion. We created training and test datasets in an 8:2 ratio, 
and used 100%, 50%, and 25% of the training dataset for 
training; we then employed the test dataset to evaluate per-
formance. All tests were repeated 10 times (bootstrapping).
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III. Results

We included 2,648,100 ECG data points from the AUMC 
biosignal database and 10,646 data points from the Shaoxing 
dataset. The baseline dataset characteristics are summarized 
in Table 1.
	 The trained CAE effectively encoded 60 features of raw 
ECG waveform data and decoded them to ECG waveforms 
(Figure 4). The mean reconstruction error was 626.583 for 
the AUMC test dataset. The mean error for each datum was 
0.305 (626.583/2,048). Each datum featured a mean error of 
3.33% when it was considered that the zero-normalized ECG 
data exhibited an average y-axis range of -3 to 6.
	 We compared the classification performance for the 
Shaoxing dataset when weights were randomly initialized 
(no transfer learning), when the CAE weights were used 
(proposed transfer learning in our study), and when the 
2D image transfer learning approach suggested in previous 
works was used. The best F1-scores of the test dataset over 
150 training epochs in the 10 bootstrap trials as the train-
ing dataset size was reduced from 100% to 50% and 25% 
are listed in Table 2. Even when all available data were used, 
the average F1-score associated with transfer learning was 
significantly higher than that associated with both random 
initialization and 2D transfer learning (p < 0.05). That dif-
ference became more marked as the training data numbers 
were reduced. When only 25% of the data were used, the 
performance of the random initialization model fell mark-
edly from 0.843 to 0.543, but the F1-scores of 2D transfer 
learning and the proposed transfer learning remained robust 
at 0.782 and 0.835, respectively. However, the F1-score of the 
proposed transfer learning was significantly better in all case 
than those of the other two strategies. 
	 When the LCI was used to evaluate learning stabilization, 
transfer learning provided significantly better stability when 

50% or 25% of the data were used compared to random 
initialization (p < 0.05) (Table 3). In particular, when only 
25% of the training data were used, the LCI indicated that 
random initialization resulted in worse performance. The 
LCIs were less than 1, indicating that sudden performance 
drops were more frequent than after complete training. By 
contrast, even when only 25% of the training data was used 
(Figure 5), the LCIs remained over 1 in most bootstrap trials 
featuring transfer learning.

IV. Discussion

We confirmed that the weights extracted by the CAE using 
ICU biosignal big data could be employed for transfer learn-
ing. The CAE reconstructed original ECG waveforms using 
only 60 training features. The weights employed to extract 
these features improved the ECG performance by stabilizing 
training via transfer learning, especially when the training 
data were sparse. The transfer learning effect was then maxi-
mal. When data are sparse, extreme values may significantly 
influence modeling because there is a risk that biased data 
will be employed. These may optimize the detection of lo-
cal minima rather than the global minimum. We kept such 
concerns in mind during training. Figure 5 shows that sud-

F1-score

Epoch

F1-score

Epoch

A B

Figure 3. �Examples of learning curves 
and LCIs. (A) Red and blue 
arrows indicate negative 
and positive changes, re-
spectively. (B) Two sample 
learning curves; the blue 
curve indicates better 
learning performance than 
the green curve. LCI: learn-
ing curve index.

Table 1. Baseline characteristics of patients in both datasets

Characteristic
AUMC dataset

(n = 26,481)

Shaoxing dataset

(n = 10,646)

Age (yr) 61.056 ± 20.172 59.2 ± 18.002
Sex, male 16,370 (61.817) 5,956 (55.946)
ECG data count 2,648,100 10,646
ECGs per patient 100 1

Values are presented as mean ± standard deviation or number (%).
AUMC: Ajou University Medical Center, ECG: electrocardiogram.
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den performance drops were more common after random 
initialization, and the final performance was poor when only 
25% of the data were employed. The performance after final 
training remained poorer than that after transfer learning 
even when the entire dataset was used.
	 We compared the performance of our transfer learning 
approach with that of the 2D image transfer learning ap-
proach. When the proposed transfer learning pretrained 
an unsupervised model using unlabeled ICU ECG data, it 
achieved better classification performance than 2D image 
transfer learning. This implies that transfer learning with an 
unsupervised model using data from a similar domain or the 

same domain is more effective than transfer learning using a 
model pretrained with 2D domain data. When 100% or 50% 
of the training dataset was used, 2D image transfer learn-
ing achieved lower performance than random initialization. 
When only 25% of the training dataset was used, 2D transfer 
learning outperformed random initialization. However, in 
all cases, our proposed transfer learning outperformed other 
approaches. Because we utilize pretrained CAE weights 
which we are making to the public, individual researchers 
who need to apply transfer learning to their ECG analysis 
can improve the performance of their models and take ad-
vantage of having a large ECG dataset.

Original ECG
Reconstructed ECG

Figure 4. �Examples of electrocardio-
gram (ECG) reconstructed 
by the convolutional auto-
encoder (CAE). The latter 
are similar to the original 
ECGs. The CAE reliably ex-
tracted and reconstructed 
variously shaped ECG data.

Table 2. Best F1-scores of the test dataset for all bootstrapping trials

Trial #

Size = 100% Size = 50% Size = 25%

Random  

initialization

Image 

transfer

Transfer 

learning

Random 

initialization

Image 

transfer

Transfer 

learning

Random 

initialization

Image

transfer

Transfer 

learning

1 0.838 0.812 0.861 0.833 0.797 0.849 0.546 0.781 0.832
2 0.850 0.812 0.853 0.835 0.801 0.836 0.537 0.784 0.838
3 0.843 0.806 0.863 0.839 0.797 0.844 0.554 0.781 0.844
4 0.844 0.808 0.861 0.826 0.795 0.845 0.551 0.779 0.832
5 0.843 0.821 0.849 0.825 0.798 0.845 0.549 0.784 0.837
6 0.852 0.812 0.855 0.831 0.800 0.842 0.54 0.781 0.839
7 0.841 0.814 0.854 0.834 0.797 0.842 0.529 0.787 0.815
8 0.843 0.813 0.856 0.833 0.791 0.845 0.541 0.779 0.836
9 0.839 0.814 0.859 0.824 0.794 0.84 0.533 0.780 0.832

10 0.843 0.800 0.859 0.833 0.791 0.841 0.552 0.781 0.845
Mean ± SD 0.843 ± 0.004 0.811 ± 0.005 0.857 ± 0.004 0.831 ± 0.005 0.796 ± 0.003 0.843 ± 0.004 0.543 ± 0.009 0.782 ± 0.003 0.835 ± 0.008

p-value <0.05 <0.05 <0.05
Image transfer: transfer learning using spectrogram via pretrained model with ImageNet dataset, Transfer learning: proposed trans-
fer learning approach in our study.
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	 Thus, researchers who lack large ECG datasets can none-
theless develop diverse, robust deep-learning models. Trans-
fer learning has been widely used in image analysis [26]. 
The fundamental features of general images are useful in 
the analysis of different images or in vision research [27]. 
ECG data can be used to evaluate not only the cardiovascu-
lar system but also general health or diabetes mellitus status 
[28]. Our research will aid the development of healthcare 
solutions by rendering it possible to gather large amounts of 
ECG data. We have placed the weights of our trained CAE 

model on our GitHub page (https://github.com/CMI-Labo-
ratory/CAE).
	 Our work had certain limitations. We used ECG data from 
only one South Korean institute for CAE model training. 
However, we confirmed that the CAE weights were useful 
to train external ECG data (the Shaoxing dataset). Thus, the 
trained weights were not overfitted and included valuable 
ECG features shared by non-Korean populations, at least in 
Asia. The generalizability of our model to Westerners should 
be studied in the future. Second, our CAE model may be 

Table 3. LCIs of the test dataset for all bootstrapping trials

Trial

Size = 100% Size = 50% Size = 25%

Random  

initialization

Transfer  

learning

Random  

initialization

Transfer  

learning

Random  

initialization

Transfer  

learning

1 1.279 1.254 1.233 1.633 0.643 1.304
2 1.408 1.627 1.409 2.094 0.670 1.242
3 1.527 1.243 1.507 1.785 0.624 1.447
4 1.238 1.649 1.076 1.554 0.598 0.977
5 1.242 1.325 1.244 1.401 0.467 1.131
6 1.565 1.648 1.426 1.823 0.503 1.250
7 1.415 1.262 1.052 2.146 0.441 0.872
8 1.281 1.806 0.891 1.374 0.579 1.052
9 1.058 1.245 1.094 1.379 0.490 0.882

10 1.693 1.344 1.179 1.595 0.554 1.679
Mean ± SD 1.370 ± 0.178 1.440 ± 0.205 1.211 ± 0.183 1.678 ± 0.266 0.557 ± 0.075 1.184 ± 0.242

p-value 0.45 <0.05 <0.05
LCI: learning curve index, SD: standard deviation.
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Figure 5. �Examples of learning curves for each data-starvation experiment. When 100% of the training dataset was used, the two 
learning curves did not appear to differ. When less than 50% of training dataset was used, the learning curves became un-
stable. However, the learning curves associated with transfer learning seemed more stable and indicated better performance 
than the learning curves associated with random initialization.
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able to extract patterns from only short (8.2 seconds) ECG 
waveforms. However, long-term patterns (such as heart rate 
variability) are also clinically important. The extraction of 
long-term patterns hidden in ECG waveforms is required. 
Although there are more types of ECG waveforms, such 
as ventricular arrhythmia, we used 11 types of arrhythmia 
ECGs in the Shaoxing dataset to validate the ECG features 
from our model. However, we expect that, because the fea-
ture extraction model learned over 2 million of ECG data 
that naturally occurred in the ICU, more various types of 
ECGs could be implied in features (Supplementary Figure 
S1). In future research, we will validate features with more 
diverse types of ECGs. 
	 In conclusion, we used a CAE to extract ECG features 
and showed that the CAE achieved efficient ECG classifica-
tion after transfer learning. The weights of the pre-trained 
CAE increased model performance and stabilized training. 
Our results will facilitate the development of ECG-related, 
healthcare artificial intelligence systems.
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