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ABSTRACT
Purpose: Histidine-containing dipeptides, which are rich in chicken, have been reported 
to reduce the risk of metabolic abnormalities via anticarbonylation mechanism in animal 
models. To determine the effect of dietary histidine-containing dipeptides on metabolic risk 
factors in humans, the relation between chicken consumption and insulin resistance were 
determined in a population consuming high carbohydrate and low protein.
Methods: A total of 7,183 subjects (2,929 men and 4,254 women) aged ≥ 50 years from the 
Korea National Health and Nutrition Examination Survey (KNHANES) were divided into 
three groups according to chicken consumption (rarely, monthly, and weekly), and evaluated 
for the metabolic risk factors using homeostasis model assessment for insulin resistance 
(HOMA-IR) and quantitative insulin sensitivity check index (QUICKI) in this cross-sectional 
study. The fourth and fifth (IV-1–3 & V-1) KNHANES, which had blood insulin data, were 
chosen for the current study.
Results: The chicken consumption was significantly associated with insulin (p for trend 
= 0.018) and HOMA-IR (p for trend = 0.023) in men. In particular, the ‘weekly’ chicken 
consuming men in the lowest tertile (< 65.0%) of carbohydrate intake group had significantly 
lower HOMA-IR (p for trend = 0.033) and higher QUICKI (p for trend = 0.043) than the 
‘rarely’ intake group. In addition, the odds ratio for abnormal HOMA-IR was 0.55 (95% 
confidence interval [CI], 0.31–0.99) and QUICKI was 0.47 (95% CI, 0.26–0.86) for the 
‘weekly’ chicken consuming group.
Conclusion: The ‘weekly’ chicken consumption had a beneficial effect on insulin resistance 
and it may partially be due to the major bioactive components in chicken, histidine-
containing dipeptides.
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INTRODUCTION

The increasing prevalence of metabolic syndrome characterized by a constellation of 
metabolic abnormalities such as dyslipidemia, elevated blood pressure, and insulin 
resistance/glucose intolerance, is expected leading to further increases in diabetes [1,2]. 
Several foods and their components have been tested in animal models and humans 
to prevent or treat metabolic abnormalities [3-6]. In this regard, histidine-containing 
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dipeptides, which are contained in a high amount in red and white meat, represent an 
emerging class of bioactive compounds. Carnosine, the archetype of histidine-containing 
dipeptides, has been reported to efficiently counteract metabolic abnormalities such as 
dyslipidemia, hypertension, hyperinsulinemia and renal dysfunction in obese Zucker rats 
[7]. Moreover, several evidence indicates its ability to affect glycemic control [8] and to 
ameliorate diabetic related diseases such as nephropathy [9] and ocular damage [10].

Among the several molecular mechanisms reported to explain the beneficial effects of 
histidine-containing dipeptides, their reaction with the reactive carbonyl species forming 
unreactive adducts is one of the most promising mechanism [11,12]. Reactive carbonyl 
species, which are generated by lipid and sugar oxidation pathways, are well known to 
involve in the pathogenesis of several oxidative stress associated diseases such as metabolic 
syndrome and diabetes [13]. However, to our best of knowledge, no study has been so far 
addressed to evaluate the efficacy of a long-term ingestion of histidine-containing dipeptides 
on metabolic disorders in humans.

Using a validated LC-ESI-MS method, Peiretti et al. [14] reported that the total content of 
histidine-containing dipeptides in chicken breast is more than 2.5% (w/w), being anserine 
the most abundant histidine-containing dipeptides (ranging from 1.47% to 1.70%), followed 
by carnosine (from 0.7% to 0.92%), and homocarnosine (less than 0.2%). Considering the 
moisture content of ≤ 72.4% (68.1%–73.5%) in chicken breast, the total content of histidine-
containing dipeptides in the dry mass in chicken can be reached almost 10%, thus making 
histidine-containing dipeptides as the most abundant and characteristic component of 
chicken meat.

Thus, the current study was conducted to evaluate the association between the major source 
of histidine-containing dipeptides, chicken, consumption and metabolic abnormalities 
in a population aged ≥ 50 years using the data from Korea National Health and Nutrition 
Examination Survey (KNHANES).

METHODS

Participants
KNHANES, conducted periodically by the Korea Centers for Disease Control and Prevention, 
provide comprehensive information on health and nutrition status and socio-demographics 
in 600 national districts in Korea. Considering the data on blood insulin were provided only 
in the period of 2007–2010 in the KNHANES, data from the fourth (IV-1, 2, 3, 2007, 2008, 
2009) and fifth (V-1, 2010) KNHANES containing serum glucose, insulin, lipid profiles and 
physical examination were utilized in this cross-sectional analysis. Because the prevalence of 
insulin resistance increases dramatically with age, we focused on our attention to the older 
adult age group (> 50 year) in this study. From an initial total of 33,829 men and women, 
11,802 subjects (5,042 men and 6,760 women) were evaluated. Of the evaluated subjects, 
2,387 subjects were excluded for diabetes (n = 1,479), stroke (n = 269), myocardial infarction 
(n = 158), angina pectoris (n = 176), current cancers (n = 233), chronic renal failure (n = 52), 
chronic obstructive pulmonary diseases (n = 97), thyroid diseases (n = 250), and an additional 
2,232 subjects were excluded for missing data of chicken consumption (n = 1,129) and 
laboratory data (n = 800), and serum glucose ≥ 6.99 mmol/L (n = 303). Diabetes was defined 
as a fasting glucose concentration ≥ 7.0 mmol/L (≥ 126 mg/dL), current use of antidiabetic 
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medications, or a self-reported physician diagnosis of diabetes. A final 7,183 subjects (2,929 
men and 4,254 women) were used in this analysis as shown in Fig. 1.

All participants provided written informed consent before the survey. The study protocol 
was approved by the Institutional Review Board of Ajou University Hospital (AJIRB-MED-
EXP-13-326).

Measurements
Body weight and height were measured in light indoor clothing without shoes to the nearest 
0.1 kg and 0.1 cm, respectively. Body mass index (BMI) was calculated as the ratio of weight/
height2 (kg/m2). Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were 
measured in the right arm using a standard mercury sphygmomanometer (Baumanometer; 
Baum, Copiague, NY, USA). The average of two SBP and DBP readings, which were recorded 
at an interval of five minutes, was used for analysis. Blood samples, after an 8 hours fast, were 
collected. They were immediately processed, refrigerated, and transported in cold storage 
to the central testing institute (NeoDin Medical Institute, Seoul, South Korea), where they 
were analyzed within 24 hours. Total cholesterol (TC), triglyceride (TG), and high-density 
lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) levels were 
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n = 33,829 assessed for eligibility
• KNHANES (2007–2010)

n = 7,183 included in analysis
• Men (n = 2,929)
• Women (n = 4,254)

n = 2,387 excluded due to specific illness
• Diabetes mellitus (n = 1,479)
• Stroke (n = 269)
• Myocardial infarction (n = 158)
• Angina (n = 176)
• Current cancer (n = 233)
• Chronic renal failure (n = 52)
• Chronic obstructive pulmonary diseases (n = 97)
• Thyroid diseases (n = 250)

n = 2,232 excluded due to
• Missing data of chicken consumption (n = 1,129)
• Missing laboratory data (n = 800)
• Glucose ≥ 6.99 mmol/L (n = 303)

n = 11,802
• Men (n = 5,042)
• Women (n = 6,760)

n = 9,415
• Men (n = 3,967)
• Women (n = 5,448)

n = 22,027 excluded
• Age < 50 years old

Fig. 1. Flow diagram of subject inclusion and exclusion. 
KNHANES, Korea National Health and Nutrition Examination Survey.



measured using a Hitachi 7600-110 chemistry analyzer (Hitachi, Tokyo, Japan). The CV 
of serum determinants determined biweekly were 0.83%–2.09% for TC, 1.34%–2.88% 
for HDL-C, 0.91%–2.39% for TG. Fasting plasma glucose concentrations were measured 
using an automated analyzer with an enzymatic assay (Pureauto S GLU; Daiichi, Tokyo, 
Japan) and serum insulin concentrations were measured using a gamma counter with an 
immunoradiometric assay (INS-Irma; Biosource, Nivelles, Belgium). The CV of plasma glucose 
was 0.86%–2.19% and serum insulin was 1.7%–6.6%. Insulin resistance was estimated using 
the homeostasis model assessment for insulin resistance (HOMA-IR) calculated by following 
equation: (fasting insulin [mU/L]× fasting glucose [mmol/L]/22.5) and using quantitative 
insulin sensitivity check index (QUICKI) calculated by following equation: 1/[log(glucose) 
+ log(insulin)]. Physical activity was assessed by a questionnaire and categorized as “yes” 
or “no” with “yes” meaning > 30 minutes of moderate physical activity three or more times 
in the last week in which the subject was tired compared to ordinary levels. As previously 
reported [15], current smokers were defined as those who had smoked more than five packs 
of cigarettes during their life and were currently smoking. Regular alcohol drinkers were 
those who currently drank alcohol more than one time per month and non-drinkers were all 
others. Occupations were classified into two groups: in-door workers and out-door workers. 
The in-door workers included managers, professionals and related workers, clerical office 
workers, service workers, sales workers and unemployed subjects. The out-door workers 
included skilled agricultural, forestry, and fishery workers. Nutrient intakes, including total 
calorie, protein, fat, and carbohydrate intakes, were assessed with a 24 hours dietary recall 
questionnaire, and chicken consumption by a food frequency questionnaire administered 
by a trained dietician. The nutrient intakes were calculated using the Food Composition 
Table developed by the National Rural Resources Development Institute (7th revision) [16]. 
Contents of dietary supplements were not documented in KNHANES.

Statistical analyses
The complex sample analysis was used for the KNHANES data for weighting all values 
following the guidance of statistics from the Korea Centers for Disease Control and 
Prevention. The clinical characteristics of study population such as age, BMI, blood pressure, 
metabolic markers such as fasting blood glucose, insulin, HOMA-IR, QUICKI, TC, HDL-C, 
TG, LDL-C, SBP, DBP and dietary intake were presented by simple descriptive method after 
weighting all values without any adjustment. All values were compared by general linear 
model in complex sample analysis. Study population were divided into three groups by 
chicken consumption: ‘rarely’ (almost none), ‘monthly’ (> 1/month), and ‘weekly’ (> 1/week) 
according to the self-administered questionnaire. Metabolic parameters were compared 
after adjusting for age [17], BMI [18], education [19], job [20,21], smoking [22], alcohol 
consumption [23], physical activity [18], protein intake, fat intake, and carbohydrate intake 
[24], and menopause, oral contraceptive, hormone replacement therapy in case of women 
reported to be risk factors for insulin resistance. In addition, study population was divided 
into groups by carbohydrate consumption (tertiles: < 65.0, 65.0–75.8, > 75.8% of total calorie 
for men; < 72.4, 72.5–80.8, > 80.9% for women) and determined the association of chicken 
consumption with the HOMA-IR and QUICKI in each group after proper adjustment. To 
elucidate the relationship of chicken consumption with insulin resistance further, odds ratios 
(ORs) of having the abnormal HOMA-IR (cutoff value = 2.34) [25] and QUICKI (cutoff value 
= 0.33) [25] according to chicken consumption were determined in the lowest carbohydrate 
consumption group by logistic regression analysis after proper adjustment. p for trend was 
used to assess the significance of all analysis. Data were analyzed using SPSS 19.0 (SPSS Inc., 
Chicago, IL, USA) to account for the complex sampling design.
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RESULTS

Clinical characteristics of study population
Clinical characteristics of men and women are presented in Table 1. Mean ages of men and 
women were 60.4 and 61.8 years old; mean BMI 23.7 kg/m2 and 24.2 kg/m2, respectively. All 
metabolic parameters such as blood sugar, insulin, cholesterol, TG except for SBP were all 
in the normal range. Thirty-one percent of men (n = 998) and 38.1% (n = 1,620) of women 
had HOMA-IR ≥ 2.34. Subjects who had ≤ 0.33 of QUICKI were 23.4% (n = 685) for men and 
25.9% (n = 1,101) for women. Total calorie intakes in men and women were 2,337 and 1,627 
kcal, respectively, and were composed of 14%, 11%, 67.4% of protein, fat and carbohydrate 
for men, and 13.4%, and 10% vs. 74.4% for women. Majority of subjects, 66.4% (n = 1,945) 
for men and 84% (n = 3,573) for women, in this population consumed more than 65% of total 
calorie from carbohydrate.

Metabolic risk factors and calorie intakes according to chicken 
consumption
The concentrations of insulin, glucose, TG, LDL-C, HDL-C in circulation as well as blood 
pressure were evaluated according to the chicken consumption. In men, there was significant 
associations in insulin (p for trend = 0.018) and HOMA-IR (p for trend = 0.023) with chicken 
consumption, which showed stepwise decrease as chicken consumption increased. Although 
TC was significantly higher in the ‘monthly’ chicken consumption group than the other 
groups, it was still in normal range (Tables 2 and 3). On the contrary, there was no significant 
difference in all metabolic parameters in women.

HOMA-IR and QUICKI according to chicken and carbohydrate 
consumptions
The impact of chicken consumption on insulin resistance was examined by carbohydrate 
consumption category. To accomplish this, men and women were further divided into 
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Table 1. Clinical characteristics of study subjects (n = 7,183)
Variables Men (n = 2,929) Women (n = 4,254) p-value
Age (yrs) 60.4 ± 0.2 61.8 ± 0.2 < 0.001
BMI (kg/m2) 23.7 ± 0.1 24.2 ± 0.1 < 0.001
FBS (mmol/L) 5.35 ± 0.02 5.24 ± 0.01 < 0.001
Insulin (mU/L) 9.4 ± 0.1 10.0 ± 0.1 < 0.001
HOMA-IR 2.27 ± 0.03 2.36 ± 0.03 0.023
QUICKI 0.344 ± 0.001 0.342 ± 0.001 0.001
TC (mmol/L) 4.91 ± 0.02 5.29 ± 0.02 < 0.001
HDL-C (mmol/L) 1.21 ± 0.01 1.31 ± 0.01 < 0.001
TG (mmol/L) 1.72 ± 0.03 1.52 ± 0.02 < 0.001
LDL-C (mmol/L) 2.91 ± 0.02 3.28 ± 0.02 < 0.001
SBP (mmHg) 123.8 ± 0.5 124.2 ± 0.4 0.505
DBP (mmHg) 78.9 ± 0.3 77.0 ± 0.2 < 0.001
Total calorie intake (kcal) 2,149.8 ± 21.9 1,549.5 ± 13.7 < 0.001
Protein intake (%) 14.0 ± 0.1 13.4 ± 0.1 < 0.001
Fat intake (%) 11.0 ± 0.1 10.0 ± 0.1 < 0.001
Carbohydrate intake (%) 67.4 ± 0.4 74.4 ± 0.3 < 0.001
Data represent mean ± SE after weighting in complex sample analysis.
BMI, body mass index; FBS, fasting blood sugar; HOMA-IR, homeostasis model assessment for insulin resistance; 
QUICKI, quantitative insulin sensitivity check index; TC, total cholesterol; HDL-C, high-density lipoprotein 
cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; SBP, systolic blood pressure; DBP, 
diastolic blood pressure.
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Table 2. Metabolic parameters according to the chicken consumption in men
Variables Chicken consumption, men (n = 2,929)

G1 (n = 1,007) G2 (n = 1,449) G3 (n = 473) p for trend
Age (yrs) 64.7 (0.4) 59.6 (0.3) 56.7 (0.3) < 0.001
BMI (kg/m2) 23.4 (0.1) 23.7 (0.1) 24.0 (0.2) 0.001
FBS (mmol/L) 5.37 (0.02) 5.34 (0.02) 5.36 (0.03) 0.4403)

Insulin (mU/L) 9.7 (0.2) 9.4 (0.1) 9.0 (0.2)2) 0.0183)

HOMA-IR 2.36 (0.05) 2.26 (0.04) 2.15 (0.05)2) 0.0233)

QUICKI 0.343 (0.001) 0.345 (0.001) 0.346 (0.001) 0.0523)

TC (mmol/L) 4.85 (0.04) 4.96 (0.03)1) 4.86 (0.05) 0.0303)

HDL-C (mmol/L) 1.21 (0.01) 1.22 (0.01) 1.23 (0.02) 0.7133)

TG (mmol/L) 1.69 (0.05) 1.73 (0.04) 1.69 (0.07) 0.8033)

LDL-C (mmol/L) 2.86 (0.04) 2.94 (0.03) 2.85 (0.05) 0.1043)

SBP (mmHg) 125.7 (0.8) 123.2 (0.6) 122.6 (1.1) 0.9773)

DBP (mmHg) 77.7 (0.5) 78.9 (0.4) 80.3 (0.7) 0.7263)

Total calorie intake (kcal) 1,993.7 (27.9) 2,158.8 (32.5) 2,338.6 (42.8) < 0.001
Protein intake (%) 13.5 (0.2) 13.8 (0.1) 15.1 (0.2) < 0.001
Fat intake (%) 9.5 (0.2) 11.1 (0.2) 12.5 (0.3) < 0.001
Carbohydrate intake (%) 70.1 (0.6) 67.6 (0.5) 63.1 (0.8) < 0.001
Data represent mean ± SE.
Chicken consumption: G1, nearly none; G2, monthly; G3, weekly.
BMI, body mass index; FBS, fasting blood sugar; HOMA-IR, homeostasis model assessment for insulin resistance; 
QUICKI, quantitative insulin sensitivity check index; TC, total cholesterol; HDL-C, high-density lipoprotein 
cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; SBP, systolic blood pressure; DBP, 
diastolic blood pressure.
1)p < 0.05 in comparison with G2 vs. G1. 2)p < 0.05 in comparison with G3 vs. G1. 3)p for trend from analysis of 
covariance test after adjustments with age, BMI, education, job, smoking, alcohol consumption, physical activity, 
protein intake, fat intake, carbohydrate intake, and menopause, oral contraceptive, hormone replacement 
therapy in case of women.

Table 3. Metabolic parameters according to the chicken consumption in women
Variables Chicken consumption, women (n = 4,254)

G1 (n = 2,045) G2 (n = 1,750) G3 (n = 459) p for trend
Age (yrs) 64.9 ± 0.3 60.0 ± 0.3 57.4 ± 0.5 < 0.001
BMI (kg/m2) 24.3 ± 0.1 24.1 ± 0.1 23.9 ± 0.2 0.178
FBS (mmol/L) 5.24 ± 0.02 5.22 ± 0.02 5.26 ± 0.03 0.5141)

Insulin (mU/L) 10.0 ± 0.2 9.9 ± 0.2 9.7 ± 0.6 0.9091)

HOMA-IR 2.38 ± 0.05 2.34 ± 0.05 2.37 ± 0.07 0.8141)

QUICKI 0.342 ± 0.001 0.343 ± 0.001 0.341 ± 0.001 0.2071)

TC (mmol/L) 5.26 ± 0.03 5.31 ± 0.03 5.33 ± 0.05 0.2341)

HDL-C (mmol/L) 1.30 ± 0.01 1.32 ± 0.01 1.33 ± 0.02 0.3581)

TG (mmol/L) 1.49 ± 0.03 1.51 ± 0.03 1.63 ± 0.07 0.1801)

LDL-C (mmol/L) 3.27 ± 0.03 3.30 ± 0.03 3.26 ± 0.05 0.6111)

SBP (mmHg) 123.3 ± 0.6 124.8 ± 0.6 125.4 ± 1.1 0.083
DBP (mmHg) 76.5 ± 0.3 77.4 ± 0.3 77.1 ± 0.7 0.116
Total calorie intake (kcal) 1,463.4 ± 18.2 1,594.5 ± 21.2 1,689.7 ± 34.6 < 0.001
Protein intake (%) 12.9 ± 0.1 13.7 ± 0.1 14.3 ± 0.2 < 0.001
Fat intake (%) 8.9 ± 0.2 10.7 ± 0.2 11.7 ± 0.3 < 0.001
Carbohydrate intake (%) 76.5 ± 0.3 73.1 ± 0.4 71.3 ± 0.7 < 0.001
Data represent mean ± SE.
Chicken consumption: G1, nearly none; G2, monthly; G3, weekly.
BMI, body mass index; FBS, fasting blood sugar; HOMA-IR, homeostasis model assessment for insulin resistance; 
QUICKI, quantitative insulin sensitivity check index; TC, total cholesterol; HDL-C, high-density lipoprotein 
cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; SBP, systolic blood pressure; DBP, 
diastolic blood pressure.
1)p for trend from analysis of covariance test after adjustments with age, BMI, education, job, smoking, 
alcohol consumption, physical activity, protein intake, fat intake, carbohydrate intake, and menopause, oral 
contraceptive, hormone replacement therapy in case of women.



tertiles of carbohydrate consumption (< 65.0, 65.0–75.8, > 75.8% of total calorie for men; 
< 72.4, 72.5–80.8, > 80.9% of total calorie for women) after proper adjustment. HOMA-IR 
and QUICKI were compared by chicken intake in each tertile of carbohydrate consumption. 
In men, HOMA-IR had a significant association with chicken consumption in the lowest 
tertile of carbohydrate consumption (Fig. 2A). Mean HOMA-IR decreased across the chicken 
consumption (p for trend = 0.033); men in the highest chicken consumption group (‘weekly’) 
had significantly lower HOMA-IR than those in the middle (‘monthly’) and lowest groups 
(’rarely’). In men, QUICKI also had a significant association with chicken consumption 
in the lowest tertile of carbohydrate consumption as shown in Fig. 2B. Mean QUICKI 
increased across the chicken consumption (p for trend = 0.043); men in the highest chicken 
consumption group had significantly higher QUICKI than the other groups. On the other 
hand, the associations between chicken consumption and insulin resistance were inconsistent 
in women (data are not shown).

ORs for abnormal HOMA-IR and QUICKI according to chicken 
consumption in the lowest tertile of carbohydrate consumption
In order to further evaluate the effect of chicken consumption on insulin resistance, ORs 
of having abnormal HOMA-IR (cutoff value = 2.34) and QUICKI (cutoff value = 0.33) were 
determined by the chicken consumption in the lowest tertile of carbohydrate consumption 
group. The ORs for abnormal HOMA-IR was 0.55 (95% confidence interval [CI], 0.31–0.99) 
and QUICKI was 0.47 (95% CI, 0.26–0.86) in the ‘weekly’ chicken intake group. Compared 
with ‘rarely’ chicken intake group, OR of having abnormal HOMA-IR was 0.55 (95% CI, 
0.31–0.99) in the ‘weekly’ consuming group after adjustments with age, BMI, education, 
job, smoking, alcohol consumption, physical activity, protein intake, fat intake, and 
carbohydrate intake. Mean carbohydrate consumption was 53.4%, 53.5%, and 51.4% in 
‘rarely’, ‘monthly’, and ‘weekly’ groups, respectively, in the lowest tertile of carbohydrate 
consumption group (Table 4).
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Fig. 2. HOMA-IR (A) and QUICKI (B) according to chicken and carbohydrate consumptions in men. 
Analysis of covariance test after adjustment for age, body mass index, education, job, smoking, alcohol consumption, activity, protein and fat intakes. 
Chicken consumption: G1, rarely; G2, monthly, G3, weekly and carbohydrate consumption: tertiles of percent total caloric intakes for carbohydrate (T1, < 65%, n 
= 976; T2, 65%–75.8%, n = 977; T3, > 75.8%, n = 976). 
HOMA-IR, homeostasis model assessment for insulin resistance; QUICKI, quantitative insulin sensitivity check index. 
*p < 0.05, G1 vs. G3.



DISCUSSION

This cross-sectional study examined the association between the consumption of rich source 
of histidine-containing dipeptides, chicken, and metabolic parameters in a population with 
a high intake of carbohydrates and low intake of proteins. Although this large population-
based study cannot establish causality, it does demonstrate beneficial effect of chicken 
consumption on insulin resistance. In particular, this significant association was prominent 
for the men consuming carbohydrates less than 65% of total calories.

Carbohydrate is the major energy source for the most Asian countries that use rice as 
their staple food [26]. In this population, 66.4% of men and 84% of women consumed 
carbohydrate more than 65% of total calories, which is exceeding the acceptable 
macronutrient distribution range for carbohydrates of 45%–65% of total calories [27]. Even 
though 12.5% of population, who had diabetes, was excluded from the analysis initially, more 
than 34% of men and 38% of women aged 50 years and older had abnormal HOMA-IR in this 
non-diabetic, no-known disease population. Considering polished white rice is the major 
form of rice consumed in this populations [28], high consumption of carbohydrate intake 
can be partially attributed to the insulin resistance [29,30]. In addition to the consumption 
of refined grain, a prospective studies utilizing participants in the Women's Health Study 
aged ≥ 45 years [31], as well as three cohorts of US adults [32] indicated a positive association 
between intakes of red meat and processed meat and risk of type II diabetes. In addition, a 
trend for a positive correlation was also reported between chicken consumption and insulin 
sensitivity in a population with a low intake of carbohydrates (33%) [33]. However, it is still 
not clear whether chicken consumption affect metabolic parameters, specifically insulin 
resistance, in population with a high carbohydrate intake.

Histidine-containing dipeptides such as carnosine (β-alanyl-L-histidine) and anserine (N-β-
alanyl-3-methyl-L-histidine) have proven to be beneficial in a variety of animal models, in 
which chronic oxidative or glycoxidative stress is a characteristic feature [7,34]. However, 
it should be noted that serum carnosinase, which has a preferential affinity to carnosine 
compared to that of anserine, can be involved in the metabolic fate of carnosine in humans 
[35]. Carnosine is the major histidine-dipeptides found in beef and pork, whereas anserine 
is the majority amount of histidine-dipeptides contained in chicken [36]. In addition, only 
anserine concentration was reported to be significantly increased in circulation within 90 
min of chicken ingestion, but no detectable histidine-dipeptides in circulation after beef 
consumption [35]. Type 2 diabetic patients reported to have reduced muscular histidine-
containing dipeptides [37]. It is plausible that chicken consumption would lead to efficient 
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Table 4. OR of having abnormal HOMA-IR (≥ 2.34) and QUICKI (≤ 0.33) by chicken consumption in subjects 
consuming carbohydrate < 65%
Variables Chicken consumption OR (95% CI) Carbohydrate consumption (%)
HOMA-IR G1 (n = 285) 1.00 53.4 ± 0.6

G2 (n = 482) 0.74 (0.47–1.15) 53.5 ± 0.4
G3 (n = 209) 0.55 (0.31–0.99) 51.4 ± 0.7

QUICKI G1 (n = 285) 1.00 53.4 ± 0.6
G2 (n = 482) 0.86 (0.51–1.44) 53.5 ± 0.4
G3 (n = 209) 0.47 (0.26–0.86) 51.4 ± 0.7

Data are shown as mean ± SE.
Chicken consumption: G1, rarely; G2, monthly; G3, weekly.
OR, odds ratio; HOMA-IR, homeostasis model assessment for insulin resistance; QUICKI, quantitative insulin 
sensitivity check index; CI, confidence interval.



increase of histidine-containing dipeptides in circulation as we reported earlier [35], and 
exert biological function. Therefore, the current study evaluated the association between 
insulin resistance with chicken consumption, which is an important protein source for this 
population.

Reliable and simple indirect methods, HOMA-IR and QUICKI, were utilized to determine the 
insulin resistance in this non-diabetic population. The current study applied cut-off value of 
2.34 for HOMA-IR to define insulin resistance for Korean [25], which was lower than cut-off 
values of 2.60 and 3.80 for Spanish [38] and Hispanic population [39], respectively. On the 
other hand, the cut-off values applied for QUICKI for Korean [25] was the same as the other 
populations [38]. This study indicated a beneficial effect of ‘weekly’ chicken consumption on 
insulin resistance in adult men aged 50 years and older. However, such association was not 
shown in women. It is possible that significantly higher BMI, cholesterol, and carbohydrate 
intake in women may be strong confounding factors for insulin resistance masking the effect 
of histidine-containing dipeptides rich chicken consumption in women [29,40]. It also 
should be pointed out that generalization of the outcome of this study to different ethnic 
groups should be cautious since this study utilized national data of Koreans, who consuming 
very high carbohydrates and low proteins daily.

The effect of chicken consumption on insulin resistance pointed out in the current study can 
reasonably be ascribed to histidine-containing dipeptides, which represent a substantial and 
characteristic component of chicken meat, accounting for almost 10% w/w of the dry meat. 
We have reported in humans that the plasma content of anserine as determined by LC-ESI-
MS/MS reached a Cmax = 2.72 ± 1.08 µM at 100 minutes after ingesting 150 g of chicken breast. 
Therefore anserine, which is a bioavailable histidine-containing dipeptides contained in a 
significant amount in chicken, may responsible for the effect of chicken consumption on 
insulin resistance. Recently, the ability of anserine to reduce blood glucose levels during oral 
glucose tolerance test in humans has been also reported [41,42]. It is interesting to note that 
the oxidation product of n-6 fatty acids, 4-hydroxylnonenal (HNE), can impair insulin action 
in muscle cells through oxidative stress and oxidative damage to proteins. HNE was found to 
induce a time- and dose-dependent decrease in insulin signaling and insulin-induced glucose 
uptake in muscle, leading to insulin resistance. These deleterious effects can be prevented by 
pretreatment with efficient reactive carbonyl species scavengers such as histidine-containing 
dipeptides [12,43-45]. Moreover, HNE and related aldehydes such as 4-hydroxy-2-hexenal 
can covalently react with insulin, affecting its biological activity in vivo [46,47]. We have 
found both in vitro and in vivo models, that histidine-containing dipeptides and in particular 
carnosine and anserine are selective and efficient scavengers of HNE, forming unreactive 
products [7]. We also demonstrated that such a detoxifying mechanism leads to several 
beneficial effects in animal models of oxidative damage, restraining the development of 
hyperinsulinemia in Zucker obese rats. The in vivo HNE detoxifying ability of carnosine has 
been independently confirmed by Barski et al. [48].

SUMMARY

The consumption of rich source of histidine-containing dipeptides, chicken is associated with 
insulin resistance in non-diabetic adult men. There was stepwise decrease of serum insulin 
and HOMA-IR according to increase of chicken consumption from ‘rarely’, ‘monthly’ to 
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‘weekly’. Furthermore, those men consuming chicken ‘weekly’ had significantly lower OR for 
abnormal HOMA-IR and QUICKI among men consuming less than 65% of carbohydrate. Thus, 
we believe ‘weekly’ chicken consumption along with reduced carbohydrate consumption to 
less than 65% of total calorie would benefit for preventing future diabetes in this population. 
Such beneficial effects of chicken consumption can reasonably be ascribed to the biological 
functions of histidine-containing dippetides acting as a reactive carbonyl species detoxifying 
agent. Validation of such biological action of histidine-containing dipeptides may require an 
intervention study.
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