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ABSTRACT

Purpose: Associations between a wide variety of diseases and the microbiome have been 
extensively verified. Recently, there has been a rising interest in the role the microbiome 
plays in atopic dermatitis (AD). Furthermore, metagenomic analysis of microbe-derived 
extracellular vesicles (EVs) has revealed the importance and relevance of microbial EVs in 
human health.
Methods: We compared the diversity and proportion of microbial EVs in the sera of 24 
AD patients and 49 healthy controls, and developed a diagnostic model. After separating 
microbial EVs from serum, we specifically targeted the V3–V4 hypervariable regions of the 16S 
rDNA gene for amplification and subsequent sequencing.
Results: Alpha and beta diversity between controls and AD patients both differed, but only 
the difference in beta diversity was significant. Proteobacteria, Firmicutes, and Bacteroidetes 
were the dominant phyla in healthy controls and AD patients, accounting for over 85% of the 
total serum bacterial EVs. Also, Proteobacteria, Firmicutes, Actinobacteria, Verrucomicrobia, 
and Cyanobacteria relative abundances were significantly different between the AD and 
control groups. At the genus level, the proportions of Escherichia-Shigella, Acinetobacter, 
Pseudomonas, and Enterococcus were drastically altered between the AD and control groups. AD 
diagnostic models developed using biomarkers selected on the basis of linear discriminant 
analysis effect size from the class to genus levels all yielded area under the receiver operating 
characteristic curve, sensitivity, specificity, and accuracy of value 1.00.
Conclusions: In summary, microbial EVs demonstrated the potential in their use as novel 
biomarkers for AD diagnosis. Therefore, future work should investigate larger case and 
control groups with cross-sectional or longitudinal clinical data to explore the utility and 
validity of serum microbiota EV-based AD diagnosis.
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INTRODUCTION

Atopic dermatitis (AD) is a chronic inflammatory skin disorder and its evolution is 
characterized by the interaction between several genetic risk factors and environmental 
triggers.1,2 Numerous genetic risk factors for AD have been confirmed with an increased 
emphasis on the importance of innate and adaptive immune pathways and skin barrier 
function.3 Filaggrin (FLG) is a key protein that is involved in epidermal terminal 
differentiation and skin barrier function, and loss-of-function mutations in the FLG gene 
are considered the greatest risk factor for AD.4 FLG is also highly related to immunoglobulin 
E (IgE)-mediated allergen sensitization, and approximately 42% of AD patients have been 
shown to possess a FLG mutation.5,6 The major causes of AD are skin barrier dysfunction, 
allergic sensitization, microbial skin colonization, and reduced innate immune responses.7,8

While AD onset usually occurs during childhood and lasts throughout adulthood, adulthood 
onset of AD can occur as well.9 With a lifetime prevalence rate of 20%, approximately 2 
million children globally suffer from AD. Recently, incidence rates of AD among children 
are increasing in affluent countries and showing disproportionate rates between developing 
and developed countries.10 Aside from physical discomfort, AD also causes children to suffer 
from extreme psychological stress. According to a report, 84% of children with AD have 
a hard time falling asleep at night and more than one-third are more sensitive about their 
appearance.11

Extensive research of the human microbiota, the total microbial community residing in our 
bodies, has provided a preliminary understanding of the biology and medical significance of 
the human microbiome and its collective genes.12 Additionally, associations between various 
diseases and the microbiome have been verified. Furthermore, studies of the extracellular 
vesicle (EV) metagenome have proven to be advantageous as it provides an excellent tool 
to probe the effects of bacterial infection at the systematic level.13 EVs are nanometer-sized 
particles that can be isolated from body fluids including serum, plasma, and urine. They 
function not only as intercellular signaling mediators using enclosed proteins, nucleic acids, 
metabolites, and lipids, but serve as a source of novel biomarkers in disease diagnosis to 
assess whether or not an individual has a disease, while risk assessment is the prediction of 
whether an individual has the potential to develop a disease or if they are at risk of developing 
a more severe or less severe case of a disease.13-15

Recently, there has been an increased research interest in the role of the microbiome in AD.16 
The results of these studies have shown that there are significant differences in microbial 
diversity and abundance between AD patients and healthy individuals.16-18 However, the 
target of these studies was bacteria in the skin microbiome, but not microbial EVs in the 
human body. Since the skin is directly affected by the atmosphere, the samples are more 
likely to be contaminated by the environment during sampling than those collected from 
inside the body. Here, we analyzed the diversity and abundance of microbial EVs in sera 
collected from AD patients and healthy controls through 16S rDNA metagenomic analysis 
using next-generation sequencing (NGS). We then developed diagnosis models based on 
multiple regression analysis of biomarkers selected through the analysis of biologically and 
statistically significant bacterial EV taxa as a pilot study.
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MATERIALS AND METHODS

Subjects and serum sample collection
In total, 24 AD patients (15 males and 9 females) and 49 controls (35 male and 14 female) 
were enrolled from Soonchunhyang University Hospital from 2015 to 2016. AD participants 
were recruited from Soonchunhyang University Hospital and sample collection was 
conducted after obtaining consent from the patients and their parents. Each of the clinical 
subjects showed very severe AD symptoms causing them to visit the hospital for treatment. 
Children with moderate to severe AD diagnosed according to Hanifin and Rajka's diagnostic 
criteria by pediatric allergy specialists were included in the study.19 The severity of AD was 
evaluated using the SCORAD index20 and disease duration (over 6 months). Healthy control 
subjects were screened through a general health examination. The present study was 
approved by the Institutional Review Board of Soonchunhyang University Hospital (IRB No. 
SCHUH 2013-06-001). The methods conducted in this study were in accordance with the 
approved guidelines, and informed consent was obtained from each subject.

EV isolation and DNA extraction from human serum samples
The serum sample was transferred to a Serum Separator Tube (Becton Dickinson, USA) and 
then centrifuged at 3,000 rpm for 15 minute at 4°C. To isolate EVs from serum samples, 
after the resulting supernatant was diluted in 1× PBS, floating particles were pelleted by 
centrifugation at 10,000× g for 1 minute at 4°C. The supernatant containing bacterial EVs was 
collected. Next, bacteria and foreign particles in the supernatant were eliminated through 
filtering by 0.22-µm filters. To extract DNA, the EVs obtained were boiled for 40 minutes 
at 100 °C and centrifuged for 30 minutes at 13,000 rpm at 4°C. EV DNA was then extracted 
using a DNeasy PowerSoil Kit (QIAGEN, Hilden, Germany). Finally, the EVs DNA in each 
sample was quantified using QIAxpert system (QIAGEN).

16S rDNA amplicon sequencing using EV DNA from human serum samples
V3-V4 hypervariable regions of the 16S rDNA gene of EVs DNA obtained were amplified with 16S_
V3_F (5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′) and 
16S_V4_R (5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAA 
TCC-3′) primers. The libraries were prepared by PCR products according to the MiSeq System 
guide (Illumina, San Diego, CA, USA) and quantified using the QIAxpert system (QIAGEN). 
Each amplicon was sequenced on a MiSeq (Illumina).

Analysis of bacterial composition in the microbiome
Paired-end reads were trimmed by cutadapt (ver. 1.1.6). The resulting FASTQ files containing 
paired-end reads were merged using CASPER and then quality filtered by Phred (Q) score. 
After merging any reads under 350 bp or over 550 bp were also discarded. Next, a reference-
based chimera detection step was performed using VSEARCH against the SILVA gold 
database. The sequence reads were clustered into operational taxonomic units (OTUs) using 
De novo clustering algorithm and the threshold was 97% sequence similarity. Finally, OTUs 
were classified using UCLUST under default parameters with SILVA 128 database.

Statistical analysis
Significant differences between AD and control groups were tested using a χ2 test for 
categorical variables, and a t test and a Wilcoxon rank-sum test for continuous variables. 
Student's t tests were additionally performed to compare the relative abundance of microbial 
taxa between AD and control groups. A P value less than 0.05 was considered statistically 
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significant. To discover biomarkers, the linear discriminant analysis (LDA) effect size (LEfSe) 
considering statistical significance and biological relevance was performed. The criteria for 
serum bacterial EV biomarker selection were to occupy an average relative abundance greater 
than 1% in any group, have a P value lower than 0.05 by a Kruskal-Wallis rank-sum test 
between control and AD patients, and have an LDA score greater than 3. Logistic regression 
using biomarkers that met the above criteria was performed to develop AD diagnostic 
models. All statistical analyses were performed using R version 3.5.1 (R Foundation for 
Statistical Computing, Vienna, Austria; https://www.r-project.org/index.html).

RESULTS

Demographic characteristics of the study subjects
A total of 73 subjects were enrolled that included 24 AD patients and 49 healthy controls. The 
difference in sex between healthy control and patients group was not significant (P = 0.71). 
The female age differences in the AD and healthy control groups were significant (P = 0.04), 
but the male ages were not significantly different (P = 0.10) (Table).

Comparison of serum microbial EV composition diversity between clinical 
groups
In order to perform microbiome analysis, 16S rDNA was sequenced from purified DNA 
extracted from microbial EVs obtained from serum collected from healthy controls and 
AD patients. To clarify the alpha diversity of the serum microbial EV composition of AD 
and healthy controls, the Chao1 index was used to estimate microbial richness and then 
expressed as a rarefaction curve. The slope of the rarefaction curve was shown to be steeper 
in the healthy control group than in the AD group, indicating higher alpha diversity in the 
control group than in the AD group (Fig. 1A). The microbial community diversity estimated 
by the Shannon diversity index did not significantly differ (P = 0.095) (Fig. 1B), and the OTUs 
of the healthy controls appeared to be approximately 4.5 times greater than those of the 
AD patients. The mean ± standard deviation valid reads were 46,020.1 ± 29,015.8 in healthy 
controls and 9,006.1 ± 3,434.4 in AD patients.

The differences in the serum microbial EV composition between healthy controls and AD 
patients were evaluated through principal coordinate analysis (PCoA). These 2 clinical groups 
were significantly divided from principal coordinate 1 (PCo1) and principal coordinate 2 
(PCo2) (p < 0.001) at the phylum, class, order, family, and genus levels (Fig. 2).

Microbial distribution throughout blood
At the phylum level, there were 9 bacterial taxa over 0.1% in the healthy controls and 6 in 
the AD patients. Proteobacteria, Firmicutes and Bacteroidetes were dominant in the healthy 
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Table. Basic clinical subject characteristics
Variables Control (n = 49) AD (n = 24) P value
Sex (Male/Female) 35/14 15/9 0.92
Age* (years)

Total 7.4 ± 5.3 10.5 ± 1.5 0.01
Male 7.9 ± 5.6 10.5 ± 1.5 0.10
Female 6.4 ± 5.1 10.6 ± 1.7 0.04

SCORAD index* - 71.8 ± 18.1 -
Data are expressed as mean ± standard deviation not otherwise specified.
AD, atopic dermatitis.

https://www.r-project.org/index.html


controls and the AD patients, accounting for over 85% of bacterial abundance. Actinobacteria 
followed with 5.7% abundance in healthy controls and 9.5% in AD patients. Proteobacteria, 
Firmicutes, Actinobacteria, Verrucomicrobia, and Cyanobacteria differed significantly 
between the healthy controls and the AD patients (P < 0.05). The amounts of Proteobacteria 
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Fig. 1. Alpha diversity of the control and AD groups. (A) Alpha-diversity rarefaction curves based on the Chao1 index to estimate richness. (B) The Shannon index 
was used to estimate serum bacterial EV community richness and evenness. 
AD, atopic dermatitis; EV, extracellular vesicle.
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(52.8%–37.8%) and Cyanobacteria (3.3%–0.1%) were shown to decrease in AD patients, 
while the amounts of Verrucomicrobia (0.3%–3.2%), Actinobacteria (5.7%–9.5%) and 
Firmicutes (24.5%–38.3%) were shown to increase (Supplementary Fig. S1A and B). Four key 
phylum-level biomarkers were selected that met the following phyla which: accounted for 
over 1% abundance in any group, had significant difference (P < 0.05) between the control 
and AD groups, and yielded LDA scores greater than 3 based on LEfSe assessment. Of these 
4 phylum-level biomarkers, Proteobacteria and Cyanobacteria were increased in the control 
group, whereas Firmicutes and Verrucomicrobia were decreased (Supplementary Fig. S1C). 
Internal model validation showed that the area under the receiver operating characteristic 
(ROC) curve (AUC), sensitivity, specificity, and accuracy were 0.99, 1.00, 0.96, and 0.97, 
respectively (Supplementary Fig. S1D).

At the class level, 17 and 13 bacterial taxa occupied over 0.1% of the total bacterial population 
in the healthy control subjects and the AD patients, respectively. Gammaproteobacteria, 
Bacilli, Bacteroidia, and Clostridia were dominant in both healthy controls and AD 
patients, accounting for over 75% of bacterial abundance. Actinobacteria followed with 
5.2% abundance in the healthy controls, and 8.8% in the AD patients. The amounts 
of Alphaproteobacteria (5.8%–0.6%) and Chloroplast (3.2%–0.1%) were decreased in 
AD patients, while the amounts of Bacilli (9.4%–22.7%), Actinobacteria (5.2%–8.8%), 
Negativicutes (2.5%–5.7%), and Verrucomicrobiae (0.3%–3.2%) were increased 
(Supplementary Fig. S2A and B). LEfSe analysis revealed 5 class-level biomarkers that 
comprised Gammaproteobacteria, Alphaproteobacteria and Chloroplast, which were 
increased in the healthy controls, and Bacilli and Verrucomicrobiae, which were decreased 
in the control group (Supplementary Fig. S2C). The results of the model internal 
validation showed that sensitivity, specificity, accuracy and AUC were all expressed as 1.00 
(Supplementary Fig. S2D).

Meanwhile, 34 and 22 bacterial orders accounted for over 0.1% of the total bacterial 
abundance in the healthy controls and the AD patients, respectively. Pseudomonadales 
was dominant in the healthy controls with 36.0% abundance, while Enterobacteriales was 
dominant in the AD patients with 34.4% abundance. Actinobacteria were the next most 
abundant order accounting for 5.2% in the healthy controls and 8.8% in the AD patients. 
The amounts of Pseudomonadales (36.0%–1.0%), Bacillales (2.4%–0.4%), Chloroplast(c) 
(2.8%–0.0%), Rhizobiales (2.1%–0.1%), Sphingomonadales (1.4%–0.1%), Rickettsiales 
(1.3%–0.1%) and Micrococcales (1.1%–0.3%) were shown to decrease in the AD patients, 
while the amounts of Enterobacteriales (7.6%–34.4%), Lactobacillales (7.0%–22.2%), 
Selenomonadales (2.5%–5.7%), Bifidobacteriales (0.6%–4.2%), and Verrucomicrobiales 
(0.3%–3.2%) were shown to increase (Fig. 3A and B). Based on LEfSe analysis, the key 
order-level biomarkers that were increased in the healthy controls were Pseudomonadales, 
Chloroplast(c), Rhizobiales, Bacillales, Rickettsiales and Sphingomonadales; whereas in 
the control group, Enterobacteriales, Verrucomicrobiales, Lactobacillales, Bifidobacteriales, 
Burkholderiales, and Corynebacteriales were decreased (Fig. 3C). Model sensitivity, 
specificity, accuracy, and AUC were all revealed to be 1.00, through internal evaluation of the 
resulting diagnostic model (Fig. 3D).

At the family level, there were 52 bacterial taxa over 0.1% in the healthy controls and 34 in the 
AD patients. Enterobacteriaceae and Enterococcaceae were dominant in the AD patients with 
34.4% and 12.6% abundance, respectively, while Moraxellaceae and Pseudomonadaceae were 
dominant in the healthy controls with 22.6% and 13.4% abundance, respectively. The portions 
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of Moraxellaceae (22.6%–0.3%), Pseudomonadaceae (13.4%–0.7%), Lachnospiraceae (5.3%–
3.0%), Porphyromonadaceae (3.4%–0.5%), Chloroplast(c) (2.8%–0.0%), Staphylococcaceae 
(1.2%–0.3%), Mitochondria (1.3%–0.1%), Sphingomonadaceae (1.3%–0.1%), and 
Rhizobiaceae (1.3%–0.0%) were shown to be decreased in AD patients; meanwhile, the 
portions of Enterobacteriaceae (7.6%–34.4%), Enterococcaceae (0.4%–12.6%), Bacteroidaceae 
(1.4%–5.0%), Corynebacterium (1.6%–4.1%), Bifidobacteriaceae (0.6%–4.2%),and 
Verrucomicrobiaceae (0.3%–3.2%) were shown to be increased (Fig. 4A and B). Through 
LEfSe assessment, the key biomarkers determined to be increased in the healthy controls were 
Moraxellaceae, Pseudomonadaceae, Porphyromonadaceae, Prevotellaceae, Lachnospiraceae, 
Chloroplast(c), Sphingomonadaceae, Rhizobiaceae, Staphylococcaceae, and Mitochondria; 
whereas, Enterobacteriaceae, Enterococcaceae, Rikenellaceae, Verrucomicrobiaceae, 
Bacteroidaceae, Bifidobacteriaceae, and Corynebacteriaceae were shown to be decreased 
(Fig. 4C). Through model internal validation, family-level AD diagnostic model sensitivity, 
specificity, accuracy and AUC were all determined to be 1.00 (Fig. 4D).

Finally, 80 and 55 bacterial genera occupied more than 0.1% of the total abundance of healthy 
controls and AD patients, respectively. Acinetobacter and Pseudomonas were dominant in healthy 
controls, while Escherichia-Shigella and Enterococcus were dominant in AD patients. The 2 genera 
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dominant in each group accounted for over 35% of bacterial abundance. Genera that showed 
a significant decrease in abundance in the AD patients were Chloroplast(c), Proteus, Acinetobacter, 
Rhizobium, Pseudomonas, Sphingomonas, Parabacteroides, Solanum melongena, Staphylococcus, and 
Dialister (more than 2-fold and P < 0.05). Conversely, genera that were significantly increased 
in the AD patient samples included Enterococcus, Klebsiella, Alistipes, Bifidobacterium, Akkermansia, 
Corynebacteriaceae( f ), Veillonella, Escherichia-Shigella, and Bacteroides (more than 2-fold and P < 
0.05) (Fig. 5A and B). As a result of the microbiome analysis of serum samples, a total of 145 
bacterial genera showed statistically significant (P < 0.05) differential composition between 
the AD patients and the healthy control subjects, while 100 of these genera showed a greater 
than 2-fold change in relative abundance. Biologically and statistically significant genus-level 
biomarkers selected through LEfSe analysis included Acinetobacter, Pseudomonas, Parabacteroides, 
Chloroplast(c), Proteus, Prevotella, Dialister, Rhizobium, Sphingomonas, and Staphylococcus, which 
were shown to be increased in the control group. Meanwhile, Escherichia-Shigella, Enterococcus, 
Alistipes, Klebsiella, Veillonella, Bifidobacterium, Akkermansia, Corynebacteriaceae( f ), and Bacteroides 
were decreased in the control group (over 1% in any group, P < 0.05 and LDA score > 3). 
Acinetobacter, Pseudomonas, Escherichia-Shigella, Enterococcus, Alistipes, Klebsiella, Veillonella, 
Bifidobacterium, and Akkermansia were determined to be key biomarkers as they all had LDA 
scores greater than 4 (Fig. 5C). The final genus-level AD diagnostic model was calculated 
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using multiple logistic regression of the biomarkers selected through LEfSe analysis. The 
results of the model internal validation showed that sensitivity, specificity, accuracy and AUC 
were all expressed as 1.00 (Fig. 5D).

At the species level, Enterococcus durans, Klebsiella sp. A4-KS2, Pseudomonas sp. SGb188, 
Bifidobacterium animalis, and Proteus sp. NC were altered significantly between the control and 
AD patient groups, whereas the species of other genera were not profiled (Supplementary 
Fig. S3). In addition, AD patient samples were clustered into 3 groups. The ages of Class I, II, 
and III were 11.6 ± 6.3, 6.8 ± 3.3, and 6.0 ± 4.5, respectively (Supplementary Fig. S4).

DISCUSSION

Findings on the relationship between microbial components in blood and chronic diseases 
have previously been published not only by us but by other groups. Despite the technical 
difficulties of cultivating bacteria from blood, many previous studies have reported successful 
culture, and microscopic and NGS detection of numerous bacteria from the blood of healthy 
subjects.21-24 However, analysis of the microbiome present in the blood, including microbial 
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EVs, has not been extensively reported.25 Successful quantification and characterization of the 
taxonomic profile of blood have been made possible by our group through high-throughput 
sequencing technology and optimization of a specific pipeline of targeted metagenomics.25 
The metagenomic method of this study is reliable due to the fact that the number of reads is 
sufficient and that the proportion of unassigned taxa is 1.7% in healthy controls and 4.5% in 
the AD patients. Unassigned taxa are assumed to be EVs derived from human cells and cell-free 
DNA contained in the serum. Results of the previous blood metagenomic studies have shown 
that Proteobacteria account for over 80% of the total proportion, followed by Actinobacteria, 
Firmicutes, and Bacteroidetes.25,26 In the present study, although the dominant blood 
microbiome phyla were likewise Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes, 
the Proteobacteria proportion was less than 80%. Possible reasons for this discrepancy may 
include the place of residence as well as the process of isolating EVs used in this study.

Until now, microbiome studies for AD have mainly targeted the skin microbiome. 
However, we here assessed AD patients' EV microbiome in serum for the first time. The 
skin microbiome interacts with other microbes and human cells as well as with the human 
immune system in multiple ways that mediate the risk of disease.27,28 However, it is evident 
that microbial EVs in the blood play a more critical role in diseases such as AD due to their 
direct interaction and effect on the human immune system.29 Furthermore, microbial EVs 
derived from the blood have a wider range of activity, since they circulate throughout the 
entire body.30 Altered bacteria-derived EV composition may have either a causal relationship 
to disease outcomes or be altered as a result of that outcome. Nano-sized EVs can pass 
through the epithelial cell barrier in the gut, unlike larger intestinal bacteria. EVs that have 
passed through the epithelial barrier are then transported throughout the body through the 
bloodstream, affecting the host's organs and tissues.30 EVs within the host's bloodstream 
exhibit variable correlation with tissue metagenomics in certain taxa of bacterial EVs showing 
positive, negative, or no correlation with tissue metagenomics. As previously stated, it is 
not certain whether these correlated EVs are the cause of what transpired in the tissues, or 
whether they are the result of altered tissue bacterial states that differentially release bacterial 
EVs into the bloodstream. Ultimately, according to our findings, it is believed that microbial 
EV composition contributes to tissue metagenomics. However, further studies are necessary 
to definitively conclude the specific cause and effect relationship between microbial EV 
composition and tissue metagenomics.

It is now evident that EVs released by bacterial and eukaryotic cells are an important mode 
of intercellular communication, influencing both neighboring and distant cells.31-33 Previous 
studies targeting the skin fluid for metagenomic analysis showed that Staphylococcus, 
Pseudomonas, Streptococcus, Acinetobacter, and Gemella proportions in AD groups were higher 
in the AD patients than in the healthy controls, while Alcaligenaceae( f ), Sediminibacterium, 
Lactococcus, Rhodococcus, Lactobacillus, Methylobacterium, Leuconostoc, and Haemophilus proportions 
were significantly lower in the AD groups than in the healthy controls at the genus level.16,34,35

Another previous study that targeted the gut microbiome showed that Bifidobacteria had a 
lower proportion in the non-atopic patients than in the AD patients, while Staphylococcus, 
Enterobacteriaceae( f ), and Clostridium were higher.36-39 Furthermore, in a previous urine 
microbiome study, Pseudomonas, Streptophyta, Propionibacterium, Methylobacterium, 
Enterobacteriaceae( f ), and Corynebacterium were higher in the AD patients compared to the 
control group, whereas Lactobacillus, Leuconostoc, Lactococcus, and Bradyrhizobium were lower.40 
In the present study, Streptococcus, Bifidobacterium, and Escherichia-Shigella were increased, and 
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Lactobacillus, Acinetobacter, Pseudomonas, Haemophilus, and Propionibacteirum were decreased in the 
AD patients compared to the healthy controls. Taken together, the present data suggest that 
the microbiome profiles of AD and healthy subjects vary according to the sampling area and 
sample type as seen in many previous studies. Biomarkers based on metagenomic analysis 
tend to differ between different sample types such as blood, urine, stool, and skin fluid. 
In this study, only serum samples were used for biomarker selection to minimize variation 
associated with different sample types. No previous studies have shown a strong correlation 
of the microbial EV microbiome composition between different sample types. In this study, 
only serum samples were used, and biomarkers were selected based on the metagenomic 
analysis of microbial EVs derived from serum. Future studies should be conducted on other 
sample types of AD patients and healthy people to contrast the diagnostic strength of 
microbial EV biomarkers associated with different sample types.

We have discovered biomarkers for diagnostic assessment using microbial EVs from AD 
patient sera, and these might be biomarkers for treatment and risk assessment through 
further studies. Several studies have suggested that the microbiome can be used as a 
source of biomarkers for the prediction and early diagnosis of diseases,41,42 and a variety 
of microbiome-based methods have been reported for biomarkers selection.41,43 In this 
study, the diagnostic models developed based on serum microbial EV analysis showed high 
accuracy, sensitivity, specificity, and overall model strength based on internal validation; 
however, due to the lack of samples, we did not perform external validation. Also, we could 
not include other parameters, such as BMI or family history as covariates in this study, due 
to the unavailability of the relevant clinical subject demographic information of the subjects 
utilized for diagnostic model development. We are continuously collecting more samples 
from both healthy subjects and AD patients with a focus on obtaining as much thorough 
clinical information and background as possible for the inclusion of more covariables in 
future microbiome-based disease diagnostic model development. Future studies should 
include such information as medication history, comorbidity, and intake of prebiotics, 
probiotics, or antibiotics to improve the diagnostic capability of the serum EV-based model. 
We suggest that diagnostic methods could be more accurate with serum EV microbiome and 
the addition of more detailed clinical information. Furthermore, we suggest the inclusion 
of more samples and more clinical information would facilitate the observation of higher 
clinical diversity between different microbiome composition clusters.

Here, we offer evidence that the microbiome might be a critical factor in disease diagnosis. 
Through microbiome utilization, objective diagnostic methods could be attained. EV-based 
metagenomic markers, which could be non-invasively used, might diagnose and detect 
the risk of AD development. While this study strongly supports the potency of serum EV 
microbiota-based diagnostics, further clinical research and external validation are mandatory 
to confirm the efficacy of our diagnostic models.
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SUPPLEMENTARY MATERIALS

Supplementary Fig. S1
Relative abundance of EVs in the sera of the control and AD groups at the phylum level. 
Differential bacterial composition was demonstrated in a (A) heatmap and (B) bar plot of 
phyla that had significantly different relative abundance. (C) LEfSe analysis was used to 
determine biologically and statistically significant biomarkers with LDA scores greater than 
3 and the resulting phylum-level biomarkers were fit using linear regression analysis and 
expressed as a (D) the ROC curve.

Click here to view

Supplementary Fig. S2
Relative abundance of EVs in the sera of the control and AD groups at the class level. Differing 
serum microbial EV classes were expressed in (A) heatmap and (B) barplot. Class-level (C) 
biomarkers with LDA scores greater than 3 were determined via LEfSe analysis and the 
resulting diagnostic AD model using class-level biomarkers expressed as (D) the ROC curve.

Click here to view

Supplementary Fig. S3
Relative abundance of AD and control serum bacterial EVs at the species level (A). heatmap 
and significantly different orders plotted in a (B) bar plot.

Click here to view

Supplementary Fig. S4
Cluster of the AD patients according to serum EVs microbiome.

Click here to view
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