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Abstract

Protein phosphorylation regulates a wide variety of cellular processes. Thus, we hypothesize that
single nucleotide polymorphisms (SNPs) that may modulate protein phosphorylation could affect
osteoporosis risk. Based on a previous conventional genome-wide association (GWA) study, we
conducted a three-stage meta-analysis targeting phosphorylation-related SNPs (phosSNPs) for
femoral neck (FN)-, total hip (HIP)-, and Lumbar Spine (LS)-BMD phenotypes. In stage 1, 9,593
phosSNPs were meta-analyzed in 11,140 individuals of various ancestries. Genome-wide
significance (GWS) and suggestive significance were defined by a = 5.21x107% (0.05/9,593) and
1.00x1074, respectively. In stage 2, 9 stage 1-discovered phosSNPs (based on a. = 1.00x1074)
were in silico meta-analyzed in Dutch, Korean, and Australian cohorts. In stage 3, four phosSNPs
that replicated in stage 2 (based on a = 5.56x1073, 0.05/9) were de novo genotyped in two
independent cohorts. /DUA rs3755955 and rs6831280, and WNT16rs2707466 were associated
with BMD phenotypes in each respective stage, and in 3 stages combined, achieving GWS for
both FN-BMD (P-value = 8.36x10710, 5.26x10710, and 3.01x10719, respectively) and HIP-BMD
(P-value = 3.26x1075, 1.97x107%, and 1.63x10712, respectively). Although /n vitro studies
demonstrated no differences in expressions of wild-type and mutant forms of IDUA and WNT16B
proteins, /n silico analysis predicts that WANT16rs2707466 directly abolishes a phosphorylation
site, which could cause a deleterious effect on WNT16 protein, and that /DUA phosSNPs
rs3755955 and rs6831280 could exert indirect effects on nearby phosphorylation sites. Further
studies will be required to determine the detailed and specific molecular effects of these BMD-
associated non-synonymous variants.

Keywords

osteoporosis; human association studies; single nucleotide polymorphism; meta-analysis; Wnt/
Beta-catenin/LRPs

INTRODUCTION

Osteoporosis, a complex disease characterized by reduced bone mass, results in
microarchitectural deterioration of bone tissue, and increased bone fragility and
susceptibility to fracture.() It has been estimated that the prevalence of osteoporosis in the
United States will increase to >14 million people in 2020,(2) and by 2025 it is projected that
there will be >3 million fractures/year in the U.S., costing $25.3 billion annually.(®) A
diagnosis of osteoporosis for both males and females is attained when bone mineral density
(BMD) is 2.5 standard deviations or more below the young adult mean.() BMD, a highly
heritable polygenic trait, is the best predictor for skeletal fragility.(®

Protein phosphorylation represents the most widespread post-translational modification
(PTM), which plays a critical role in essential cellular processes, e.g., metabolism, cell
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signaling, differentiation, and membrane transportation.(® Large-scale phosphoproteomics
studies suggest that more than half of all eukaryotic proteins are phosphorylated.(”) The
most common phosphorylation sites in eukaryotes are serine (S), threonine (T), and tyrosine
(Y) residues,® which are catalyzed by S/T-specific, Y-specific, and dual-specificity protein
kinases.(® Single nucleotide polymorphisms (SNPs) constitute almost 90% of genetic
variations in the human genome.(9 Non-synonymous SNPs (nsSNPs), defined as SNPs
resulting in amino acid changes that include either missense or nonsense mutations, 1)
represent 60% of known disease-causing mutations.(12) Of them, those that create/alter/
abolish phosphorylation sites, called phosphorylation-related SNPs (phosSNPs), have been
recognized as functional variants for a spectrum of human diseases, e.g., lung cancer
(CSF1R1510079250),(33) prostate cancer ( 7253 rs1042522),(13.14) Jong QT syndrome
(KCNH2rs51805123),(15.16) systemic lupus erythematosus (VEGRZ2 rs2305948),(17) and
tuberculosis ( 7LR2rs5743708).(18:19) Each phosphorylation site consists of an acceptor
residue surrounded by an evolutionarily conserved motif consisting of 7-12 amino acid
residues on either flanking region. Based on the hypothesis that a sequence motif
surrounding an acceptor residue represents a main determinant of protein kinase specificity,
phosphorylation sites can be predicted /n silico, and nsSNPs affecting such sites can be
identified. From 91,797 nsSNPs of NCBI dbSNP Build 130, by applying the Group-based
Phosphorylation Scoring (GPS) 2.0 program (a kinase-specific phosphorylation site
predictor)(20), Ren et al. (2010)@Y) identified 64,035 phosSNPs residing in 17,614 human
proteins, which were categorized into five distinct types: I, 11, 111, IV and V based on the
different effects they exert on phosphorylation sites.

Among at least 60 loci identified by > 40 previous genome-wide association (GWA) studies
and meta-analyses of these studies for osteoporosis, WNT16 locus has been found to be an
important genetic determinant of osteoporosis risk.(?2) The human WN716 gene spans ~16
kb from initiation to termination codons, encoding two protein isoforms — WNT16A (40.5
kD) and WNT16B (40.7 kD).(23) As depicted in Supplementary Figure S1, these two
WNT16 isoforms have different first exons (i.e., 1a and 1b, respectively), independently
controlled by two alternative promoters P1 and P2, respectively.(4) Expression of the
WNT16A isoform has been shown to be restricted to the pancreas in humans, whereas
WNT16B is expressed in multiple organs.(?4) Compared to WNT16A, the role of WNT16B
as a key regulator of osteoclastogenesis has been more extensively characterized.(2)

Meta-analyses of GWA studies have significant potentials for detecting subtle genetic
effects.(26) However, because conventional GWA studies often include a large number of
variants of unknown functional effects, the significance threshold attained by Bonferroni
correction becomes overly conservative, producing a high rate of type Il error (i.e., B).
PhosSNPs are more likely disruptive to protein function than other protein-coding missense
mutations.(2”) However, such potentially causal missense mutations could be missed by
conventional GWA approaches, due to very strict control for type | error (i.e., a). Power to
detect disease-causing variants can thus be increased by focusing exclusively on SNPs with
higher prior probabilities of functional effects, either as in a whole-exome sequencing(@8)
approach targeting solely exonic SNPs, or as we apply here, targeting exclusively potentially
functional phosSNPs. However, such a functional candidate genomic region approach(2®)
could be susceptible to a higher rate of false positive results.(39) Therefore, to guard against
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an inflated a., we employed a three-stage approach, such that those phosSNPs attaining
genome-wide significance (GWS) in stage 1 (i.e., GWA discovery) are required to be
replicated in independent cohorts of stages 2 and 3, respectively, based on their
corresponding Bonferroni-corrected a thresholds.

MATERIALS AND METHODS

A detailed description of study participants, phenotype measurement and modeling, DNA
genotyping, quality control (QC), and genotype imputation, association tests, meta-analysis
methods, and regional association plots of the three-stage GWA meta-analysis is given in
Supplementary Materials and Methods. At stage 1, seven GWA cohorts were included, and a
suggestive significance threshold of a. = 1.00x10~4 was applied for phosSNP selection. At
stage 2 (/n silico replication), three GWA cohorts were included, and at stage 3 (de novo
genotyping replication), two independent cohorts were included, and at each stage, a
Bonferroni-corrected significance threshold was applied.

PhosSNPs in Potential Phosphorylation Sites

The phosSNP-centric GWA meta-analysis focuses exclusively on 9,593 phosSNPs in stage 1
of the conventional GWA meta-analysis.(31) Details about phosSNP selection are given in
the Supplementary Materials and Methods.

In Silico Bioinformatics Analyses

(1) Computational Predictions of Phosphorylation Sites Affected by
phosSNPs—Phosphorylation sites that could be affected by the three significant
phosSNPs — /DUA rs3755955 (R105Q) and rs6831280 (A361T), and WNT16rs2707466
(WNT16B T263lI), were predicted by two commonly used online software programs:
NetPhos2.062) and NetPhosK1.0.(33) Details about these programs are given in the
Supplementary Materials and Methods.

(2) Computational Predictions of Functional Impacts of phosSNPs—Functional
effects of the three significant phosSNPs — /DUA rs3755955 (R105Q) and rs6831280
(A361T), and WNT16rs2707466 (WNT16B T2631) were computed using four online
software tools: (i) Mutation Assessor,34) (ii) BLOSUM62,3%) (iii) PMut,3® and (iv)
PANTHER.G7) Details about these tools are given in the Supplementary Materials and
Methods.

(3) Computational Prediction of Protein Secondary and Tertiary Structures—
Protein secondary and tertiary structures were predicted by Protein Homology/analogy
Recognition Engine Version 2.0 (Phyre?).(38:39) The Phyre? server predicts a protein’s
secondary structure based on the amino acid sequence. In brief, this program converts a
protein sequence into a hidden Markov model (HMM) based on sequence homologs
retrieved from experimentally determined known protein structures using PSI-Blast.(4) The
HMM of the query sequence is then scanned against a non-redundant library of HMMs of
proteins with experimentally determined structures. The 3D model of the query sequence is
then constructed on the basis of alignments between the HMM of query sequence and the
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HMMs of known structures. Phyre2 program can generate highly accurate models at low
sequence identities (e.g., 15-25%).(39)

In Vitro Protein Expression Studies

RESULTS

To assess whether mutant (MUT) alleles of respective phosSNPs, i.e., /DUA rs3755955,
rs6831280, and WNT16rs2707466, could affect protein expression levels in vitro, we
designed and constructed plasmid pcDNA3.1-Myc/His vectors harboring either wild-type
(WT) or MUT allele of each phosSNP and transfected each of them into Chinese hamster
ovary (CHO) cells. Details about cloning and transfection and Western blot analysis are
given in the Supplementary Materials and Methods.

Cohort characteristics at three stages were presented in Supplementary Table S1. A detailed
comparison of study designs of current study with those of two previous conventional GWA
meta-analysis studies(32:41) is shown in Figure 1. In stage 1, current study restricted
association tests to exclusively phosSNPs (~10K), as opposed to the entire set of genotyped
and imputed SNPs (~5800K) of previous conventional study.(31) As a result, different SNP
sets were selected from stage 1 for stage 2 /n sifico replication [9 phosSNPs for current
study, and none overlapped with 33 SNPs of previous conventional study(L)]. In stage 2,
different SNP selection criteria were employed between current study and previous
conventional study.(3L). Four stage 2-selected phosSNPs (i.e., /DUA rs3755955 and
rs6831280, WNT16rs2707466, and ESPL1rs56358776) of current study were entirely
different from those three stage 2-selected SNPs of previous conventional study®b (i.e.,
SMOC1rs227425, CLDNI14rs170183, and intergenic SNP rs6827815).

Stage 1 (GWA Discovery)

Table 1 presents a comparison of 33 SNPs selected in stage 1 of previous conventional
study, 3D with those 9 phosSNPs selected in stage 1 of current study, which include four
phosSNPs (located in three gene regions) attaining phosSNP-centric GWS (i.e., a =
0.05/9,593 = 5.21x107%) — /BSPrs1054627 for FN-BMD in female-specific sample, /DUA
rs6831280 and rs3755955 for FN-BMD in gender-combined (i.e., male and female) sample,
and WINT16rs2707466 for HIP-BMD in gender-combined sample, and another five
phosSNPs (located in four gene regions) attaining only suggestive significance (i.e., a =
1.00x10~4) — SRMS rs310655 for FN-BMD in gender-combined sample, DNAHS
rs61748601 for HIP-BMD in gender-combined sample, £SPL 1rs56358776 and rs1318648
for LS-BMD in gender-combined and female-specific samples, respectively, and GPATCH1
rs2287679 for FN-BMD in female-specific sample.

Stage 2 (in silico Replication)

In stage 2, the above 9 stage 1-discovered phosSNPs were subject to replication in three /in
silico independent cohorts. A meta-analysis within stage 2 revealed 6 phosSNPs at
Bonferroni corrected a = 5.56x1073 (i.e., 0.05/9): WNT16rs2707466 for FN-BMD in
gender-combined sample, /BSPrs1054627 for FN-BMD in gender-combined sample,
ESPL 1151318648 and rs56358776 for LS-BMD in gender-combined sample, and /DUA
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rs3755955 and rs6831280 for FN-BMD in gender-combined sample. Of these, /BSP
encodes a well-known bone matrix protein that is important for bone mineralization(42-44)
which, consequently, was not further tested in stage 3. For £SPL 1 phosSNPs rs1318648 and
rs56358776, neither reached GWS (i.e., 5.21x1076 < P-values < 1.00x107%) in stage 1
phosSNP-centric GWA meta-analysis. £SPL1rs1318648 is a previously known nsSNP
suggestively associated with FN- and LS-BMD phenotypes®Y), whereas £5PL 1 rs56358776
is a novel nsSNP that was not reported in either of two previous conventional studies(1:45),
which is in Aigh linkage disequilibrium (LD) with £SPL1rs1318648 [rZ= 0.798 in 1000
Genomes (1KG) Pilot 1 CEU Population by applying the SNP Annotation and Proxy search
(SNAP) tool“6) of Broad Institute]. Therefore, we selected 4 stage 2-replicated phosSNPs
— IDUA rs6831280 and rs3755955, WNT16rs2707466, and potentially novel phosSNP
ESPL 11556358776, for stage 3 de novo genotyping replication.

Stage 3 (de novo Genotyping Replication)

In stage 3, the above four stage 2-selected phosSNPs identified were subject to further
replication by de novo genotyping. Three of these phosSNPs were replicated by stage 3-
specific meta-analysis at Bonferroni corrected a. = 0.0125 (i.e., 0.05/4). WNT16rs2707466
was consistently replicated for HIP-, FN-, and LS-BMD phenotypes in gender-combined
sample. /DUA rs3755955 and rs6831280 were significantly associated with FN- and HIP-
BMD phenotypes in gender-combined sample. ESPL1rs56358776 was not replicated at this
stage (P-value = 0.79, 0.78, and 0.32 in gender-combined sample for FN-, HIP-, and LS-
BMD, respectively).

Stage 1+2+3 Meta-analysis

Table 2 presents ethnicity-specific and combined meta-analysis results aggregating these 3
stages for stage 1-discovered (a. = 1.00x1074), and stage 2- and 3-replicated (Bonferroni-
corrected a = 5.56x1073 and 0.0125, respectively) phosSNPs — /DUA rs6831280 (A361T),
IDUA rs3755955 (R105Q), and WNT161rs2707466 (WNT16B T2631), respectively. In
ethnicity-specific meta-analyses, in Caucasians, all three attained phosSNP-centric GWS
(i.e., a = 5.21x1076) for FN-BMD and only WN/T16rs2707466 attained this threshold for
HIP-BMD and in Asians, only WNT16rs2707466 attained phosSNP-centric GWS for HIP-
BMD. The effects of these phosSNPs were consistent between Caucasian and Asian
ethnicities. In combined meta-analysis across 3 stages, /DUA rs3755955 was significantly
associated with FN- and HIP-BMD phenotypes (P-value = 8.36x10710 and 3.26x1075,
respectively). Likewise, /DUA rs6831280 was significantly associated with FN- and HIP-
BMD phenotypes (P-value = 5.26x10710 and 1.97x107%, respectively). Similarly, WNT716
rs2707466 was significantly associated with FN- and HIP-BMD phenotypes (P-value =
3.01x10710 and 1.63%10712, respectively). Regional association plots were generated for
these three significant phosSNPs — /DUA rs3755955 and rs6831280 (Figure 2), and
WNT16rs2707466 (Figure 3).

Phosphorylation Sites Predicted to be Affected by IDUA and WNT16 PhosSNPs

Based on predictions by NetPhos2.0 and NetPhosK 1.0, four phosphorylation sites (have
either a NetPhos2.0 score > 0.5 or a NetPhosK1.0 score > 0.5) were predicted by these two
in silico bioinformatics tools that could be affected by these three BMD-associated
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phosSNPs (Table 3). Detailed information on 96 and 54 predicted phosphorylation sites for
IDUA and WNT16B were presented in Supplementary Tables S2 and S3, respectively.
IDUA phosphorylation sites T98 and S102 were potentially affected by their neighboring
phoSNP /DUA rs3755955 (R105Q), whereas IDUA phosphorylation site T366 was
potentially affected by a neighboring phoSNP /DUA rs6831280 (A361T). WNT16B
phosphorylation site T263 was potentially directly abolished by phoSNP WNT16rs2707466
(WNT16B T263I). Of them, WNT16B T263 (affected by WNT16rs2707466) has been
experimentally validated to be phosphorylated 7 vivo,4") whereas IDUA T98 and S102
(potentially affected by /DUA rs3755955) and T366 (potentially affected by /DUA
rs6831280) have yet not been experimentally confirmed.

Predicted Functional Impacts of IDUA and WNT16 PhosSNPs

As shown in Supplementary Table S4, although /DUA rs6831280 (A361T) and rs3755955
(R105Q) were predicted to have no (Mutation Assessor and BLOSUMG62 scores) or low
(PMut and PANTHER scores) functional impacts, WNT16rs2707466 (WNT16B T263I)
showed highest Mutation Assessor score (0.705; nearly reaching a “low impact” threshold
0.80), lowest BLOSUM®G62 score of (—1.00; indicative of “evolutionarily less acceptable”),
highest PMut pathogenicity score (0.3099; indicative of a “moderate pathogenicity”), and
lowest PANTHER subSPEC score (-1.92476; indicative of a deleterious effect
corresponding to a highest deleteriousness probability Pgeleterious = 0-25441). Further,
evolutionary analysis by multiple sequence alignment method revealed that a 27-amino-acid
peptide (-14 — +12) surrounding the T263 phosphorylation site is conserved across three
mammalian species — human, mouse and rat (Supplementary Figure S1), supporting a
likely functional significance of this phosSNP. Based on these bioinformatics prediction
results, we further assessed the potential impact of WNT716rs2707466 (WNT16B T263I) on
WNT16B secondary and tertiary structures.

Predicted Secondary and Tertiary Structures of WT and MUT alleles for WNT16 PhosSNP

The secondary and tertiary structures of protein isoforms encoded by WT and MUT alleles
for WINT16rs2707466 (WNT16B T2631) predicted by Phyre? server are presented in
Supplementary Figures S2 and S3, respectively. With respect to secondary structures, this
phosSNP (i.e., T263 residue) is located in a disordered'region (indicated by a tract of “?”
symbols) typical for a phosphorylation site,(#8) downstream of a predicted p-strand
(SIQISDK) for either isoform (Supplementary Figure S2) with potential functional effects
(Supplementary Table S4). A comparison of the local 3D structures between WT and MUT
isoforms near the T263 residue clearly shows different spatial patterns (Supplementary
Figure S3, dashed boxes).

Effects of IDUA and WNT16 PhosSNPs on Protein Stability

In CHO cells, Western blot results showed that, at the protein level, /DUA rs6831280
(A361T) and rs3755955 (R105Q) MUT alleles were expressed at equivalent levels compared
with the /DUA WT allele (Panel As for Supplementary Figures S4 and S5, respectively).
The WNTrs2707466 (WNT16B T2631) MUT allele was also expressed at equivalent levels
compared with the WNT16 WT allele (Panel B for Supplementary Figures S4 and S5,
respectively). Overall, the protein expression of the MUT allele is equivalent to that of the
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WT allele for each of these three phosSNPs, suggesting that their influences of protein
phosphorylations could be important, rather than on expression levels per se.

DISCUSSION

In human genome, nsSNPs account for 60% of mutations that cause diseases.(12) However,
not all nsSNPs lead to a functional impact. Therefore, it is essential to select only those
nsSNPs that are most plausible causal variants. Our study is unique in associating phosSNPs
affecting the most common type of PTM with BMD phenotypes by taking a three-stage
approach to protect against an inflated false positive rate. Beyond detecting genetic
association, we also performed /n silicoand in vitro functional characterizations of identified
significant nsSNPs. At stage 1, four chromosomal loci i.e., 4p16.3 (/BSP), 4922.1 (/IDUA),
7931.31 (WNT16), and 20913.33 (GPATCH1I), were detected by both the current and
conventional studies,31) but were represented by totally different SNPs, and for 4g22.1 and
20q13.33, represented by different genes. At 7q31.31, the previous study detected
association with intergenic SNP rs10242100 (with no apparent functional significance) near
WNT16 gene, which is in moderate LD with the WNT16 SNP rs2707466 detected by our
current study [/Z = 0.462 in 1KG Pilot 1 CEU Population by applying SNAP tool(46)].
Overall, three phosSNPs (/DUA rs6831280 and rs3755955, and WNT16rs2707466), were
discovered in stage 1 and were independently replicated in stages 2 and 3, respectively. In
ethnicity-specific meta-analyses, their effects were consistent in subgroups of Caucasian and
Asian ancestries, and statistical significances were greater in Caucasian than in Asian
samples in part because of a larger Caucasian sample size (Table 2). In combined stage
1+2+3 meta-analysis, all three phosSNPs reached conventional GWS for FN-BMD, and
WNT16rs2707466 attained conventional GWS for HIP-BMD also. By applying NetPhos2.0
and NetPhosK1.0, 96 and 54 predicted phosphorylation sites in IDUA and WNT16B
proteins, respectively (Supplementary Tables S3 and S4). /DUA encodes a glycosyl
hydrolase that hydrolyzes the terminal alpha-L-iduronic acid residues of two
glycosaminoglycans, dermatan sulfate and heparan sulfate*9). Wang et al. (2010)9) created
Idua-W392X mouse model, and found that 35-week-old homozygous Idua-W392X mice
showed a 24% increase in femur BMD, and bone abnormalities such as thickening of the
zygomatic arch and aberrations in the length and width of the femur were also observed®9).

For IDUA protein, a predicted phosphorylation site T366 could be indirectly affected by
IDUA rs6831280 (A361T), a Type I11 phosSNP, and two predicted phosphorylation sites
T98 and S102, could be indirectly affected by /DUA rs3755955 (R105Q), a Type I1(+)
phosSNP (Table 3). For WNT16B protein, phosphorylation site T263 could be directly
abolished by WNT16rs2707466 (WNT16B T263l), a Type I(-) phosSNP. Of them, only
WNT16B T263 has been experimentally validated to be a genuine phosphorylation site by
mass spectrometry technology in a phosphoproteomic analysis of human embryonic stem
cells 7n vivo.(47) Whether IDUA T98 and $102, and T366 are actual phosphorylation sites
influenced by nearby /DUA phosSNPs rs3755955 (R105Q) and rs6831280 (A361T) remain
to be experimentally determined.

WNT16encodes a member of the wingless-type MMTYV integration site family, which has
been reported to mediate signaling via both canonical and non-canonical \Wnt pathways.
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Wht proteins are known to play important roles in vertebrate skeletal development.(51-53)
Wntl16 is expressed in osteoid tissue of craniofacial bones during embryonic development in
mice, and suppresses osteoblast differentiation through the canonical B-catenin pathway in
MC3T3-E1 preosteoblasts.(>4) Several GWA meta-analysis studies have demonstrated that
WNT16intron 3 SNP rs3801387,(41) exon 2 rs2908004 (WNT16B G82R) and exon 4
rs2707466 (WNT16B T2631)(55:56) a5 well as intergenic SNP rs10242100(1) are associated
with BMD phenotypes (Figure 3). However, functional roles of non-coding SNPs
rs10242100 and rs3801387, which are in almost perfect LD [/Z = 0.915 in 1KG Pilot 1 CEU
Population by applying SNAP tool“6)], remain unclear. WNT16exon 2 rs2908004
(WNT16B G82R) and exon 4 rs2707466 (WNT16B T263l) are shown to be in nearly
complete LD [/Z=0.933 in 1KG Pilot 1 CEU Population by applying SNAP tool“6)], which
could represent the same phosphorylation association signal (i.e., WNT16rs2707466).
Consistent with our results, exon 2 nsSNP rs2908004 was significantly associated with
upper limbs BMD, lower limbs BMD, as well as skull BMD phenotypes, and is the top
signal in the chromosome 7g31.31 region in a GWA meta-analysis of the Avon Longitudinal
Study of Parents and their Children and Generation R Study.(®”) The phosSNP WNT16
rs2707466 results in a substitution of threonine by isoleucine in both WNT16A (amino acid
position 253) and WNT16B (amino acid position 263) isoforms. This phosSNP is predicted
to exert a modest impact on protein function (by Mutation Assessor), and to be
evolutionarily less acceptable (by BLOSUMG62) and moderately deleterious (by PMut and
PANTHER) (Supplementary Table S4). Because WNT16B T263 has been experimentally
confirmed to be a phosphorylation site in vivo,(4") in silico secondary structure prediction
shows that T263 is located in a disordered region (Supplementary Figure S2). This is in
agreement with findings of Dephoure et al.,(®8 which demonstrated that phosphorylation
sites mostly occur in disorderedregions, and the addition of a phosphate group to acceptor
residue upon phosphorylation can lead to a disorder-to-order transition.(% Predicted local
3D structures also indicate notable differences between WT and MUT isoforms around T263
phosphorylation site (Supplementary Figure S3). Taken together, it is highly probable that
T263, a phosphorylatable residue located in a disordered region of WNT16B protein, acts as
a switch for regulating protein-protein interactions,®® and WNT16rs2707466, a type 1(-)
phosSNP that abolishes this phosphorylation site, constitutes a causal variant for BMD
phenotype. This is supported by observations of wntZ6 null mice, which had significantly
reduced total body BMD, thinner cortical bones at the femur midshaft, and reduced bone
strength of both the femur and tibia.(55:56), Further, local injection of WNT16B (WT form)
could increase BMD, providing direct experimental evidence that WN/T16 gene is critical for
skeletal development.(25)

There are several limitations of our study. First, 9,593 phosSNPs included in stage 1 (GWA
discovery) of current study represent 14.98% of the entire 64,035 phosSNP set.
Nevertheless, the original 5,842,825 autosomal SNPs either directly-typed or imputedin
stage 1 of conventional GWA study®Y) only covered 15.92% of entire 36.7 million human
autosomal SNP set(®0), Therefore, although these included phosSNPs appear limiting, they
constitute a similar proportion of total phosSNPs as the original stage 1 SNP set of previous
conventional study(®L). Second, our /n vitro protein expression experiments of WT and MUT
alleles of /DUA rs3755955 (R105Q), rs6831280 (A361T), and WNT16rs2707466
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(WNT16B T263I) only demonstrated relatively equivalent protein expression levels between
WT and MUT alleles (Panel Bs of Supplementary Figures S4 and S5, respectively).
Additional experiments by applying phospho-specific antibodies could be insightful to
reveal whether these phosSNPs truly affect protein phosphorylations either directly (for
WNT16phosSNP rs2707466) or indirectly (for IDUA phosSNP rs6831280 and rs3755955).
However, such experiments are time-consuming and the extents of such differences may be
challenging to detect, because both IDUA and WNT16B proteins can have multiple
phosphorylation sites, and these phosSNPs may only affect 1-2 among them. It also remains
to be shown whether a fraction of BMD variation is attributed to impacts of /DUA
rs6831280 (A361T) and rs3755955 (R105Q) on their neighboring IDUA putative
phosphorylation sites T98, S102 and T366, and to abolishment of WNT16B T263
phosphorylation site by WNT716rs2707466 (WNT16B T263I). Nevertheless, the study of
Moverare-Skrtic et al.(2%) clearly demonstrated a pivotal role of WNT16B WT isoform in
skeletal development, and phosSNP rs2707466 could indeed play a major functional role in
regulating bone metabolism.

The collective findings from our multi-stage phosSNP-centric GWA meta-analysis identified
and robustly validated three phosSNPs, /DUA rs6831280 and rs3755955 and WNT16
rs2707466, to be significantly associated with FN- and HIP-BMD. These results could offer
new mechanistic insights of causal variants for osteoporosis. Because currently there is a
lack of bone-specific phosphorylation maps, for those phosphorylation sites that are
impacted by these BMD-associated phosSNPs, more studies are necessary to elucidate
whether phosphorylations affected by them are present in these various types of bone cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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(stage 1+2-only) (stage 3-only)

16 fracture SNPs are entirely a
subset of 64 EMD ShMPs

FIGURE 1.
Diagrammatic representations of study designs of three-stage GWA meta-analysis of current

study (top panel), Zhang et al. (2014)31) (middle panel), and Estrada et al. (2012)“1)
(bottom panel)
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FIGURE 2.
Regional association plots for chromosome 4p16.3 loci /DUA Exon 3 phosSNP rs3755955

(R105Q), Exon 8 phosSNP rs6831280 (A361T), intergenic SNP rs6827815, and FGFRL1
3’-untranslated region SNP rs4647940 based on RefSeq accession number NG_008103.1 for
FN-BMD (most significant phenotype). (A) /DUA rs6831280 with flanking + 100-kb (B) a
zoomed-in view of the center region [indicated by the dashed box of (A)] — /DUA
rs6831280 with flanking + 40-kb. PhosSNPs were highlighted in bond font
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FIGURE 3.
Regional association plot for WNT16rs2707466 with flanking £ 100-kb for HIP-BMD

(most significant phenotype), with chromosome 7931.31 WNT16 Exon 2 nsSNP rs2908004
(WNT16B, G82R), Intron 3 SNP rs3801387, Exon 4 phosSNP rs2707466 (WNT16B
T263l), and intergenic SNP rs10242100 based on RefSeq accession number NG_029242.1
indicated. The phosSNP was highlighted in bond font
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