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Protein location and function can change dynamically depending
on many factors, including environmental stress, disease state,
age, developmental stage, and cell type. Here, we describe an
integrative computational framework, called the conditional func-
tion predictor (CoFP; http://nbm.ajou.ac.kr/cofp/), for predicting
changes in subcellular location and function on a proteome-wide
scale. The essence of the CoFP approach is to cross-reference general
knowledge about a protein and its known network of physical inter-
actions, which typically pool measurements from diverse environ-
ments, against gene expression profiles that have been measured
under specific conditions of interest. Using CoFP, we predict condi-
tion-specific subcellular locations, biological processes, and molecu-
lar functions of the yeast proteome under 18 specified conditions. In
addition to highly accurate retrieval of previously known gold stan-
dard protein locations and functions, CoFP predicts previously
unidentified condition-dependent locations and functions for
nearly all yeast proteins. Many of these predictions can be con-
firmed using high-resolution cellular imaging. We show that, under
DNA-damaging conditions, Tsr1, Caf120, Dip5, Skg6, Lte1, and Nnf2
change subcellular location and RNA polymerase I subunit A43,
Ino2, and Ids2 show changes in DNA binding. Beyond specific pre-
dictions, this work reveals a global landscape of changing protein
location and function, highlighting a surprising number of proteins
that translocate from the mitochondria to the nucleus or from en-
doplasmic reticulum to Golgi apparatus under stress.
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Acellular response can induce striking changes in the subcellular
location and function of proteins. As a recent example, the

activating transcription factor-2 (ATF2) plays an oncogenic role in
the nucleus, whereas genotoxic stress-induced localization within
the mitochondria gives ATF2 the ability to play tumor suppressor,
resulting in promotion of cell death (1). Changes in protein loca-
tion are typically identified using a variety of experimental methods
[e.g., protein tagging (2), immunolabeling (3), or cellular sub-
fractionation of target organelles followed by mass spectrometry
(4)]. Although highly successful, such measurements can be labo-
rious and time-consuming, even for a single protein (all methods
except mass spectrometry) and condition (all methods).
For these reasons and others, computational prediction of

protein location and function has been a very active area of bio-
informatic research. Early methods attempted to infer protein
function based mainly on individual protein features, such as se-
quence similarity or structural homology (3, 5–17). These methods
range from simple sequence–sequence comparisons to profile- or
pattern-based supervised learning methods. Other methods pre-
dicted protein function using gene expression data (18, 19) based
on the observation that proteins with similar patterns of expres-
sions share similar functions (20). Another class of methods is
based on text mining (21, 22).
Although such methods are still widely used for annotating

general protein locations or functions, the recent availability of

data about large-scale molecular networks, such as protein–pro-
tein interactions, has changed the functional prediction paradigm
(7, 23). In reality, proteins seldom function alone (24). Therefore,
a number of network-based methods have been developed that
predict location or function based on a protein’s physically inter-
acting or functionally related partners (25). Network-based
methods follow either of two distinct approaches, which we call
direct vs. module-based annotation schemes. Direct annotation
methods propagate protein location or function annotations
over a biological network based on the assumption that nearby
proteins in the network have similar functions. Module-based
methods first identify groups of functionally related genes or
gene products using unsupervised clustering methods and then
assign a representative function to each module based on the
known locations or functions of its members (25).
Notably, all of these previous methods have difficulty pre-

dicting condition-specific or dynamic behavior. The main diffi-
culty in predicting such dynamics is the lack of known protein
locations and functions under the target condition(s), which are
required for generating a prediction model in the training stage.
One possible solution is to find dynamic network modules in
gene expression networks constructed under specific conditions
(26). However, it is difficult to assign representative locations or
functions to the dynamic module, and one cannot assign a loca-
tion or function to other proteins not belonging to the module.
Here, we describe a general approach for predicting the

proteome-wide, condition-dependent locations and functions of
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Fig. 1. Proteome-wide prediction of conditional locations and functions under stresses. (A) Generally known protein functions, including 18 subcellular
locations, 33 biological processes, and 22 molecular functions. (B) Yeast protein–protein interactions accumulated from several databases. (C) Static in-
formation of proteins, including sequence, chemical properties, motifs, and GO terms (single-protein features). (D) Model generation after generating static
single-protein (denoted S) and network features (denoted N and L) up to network distance D = 2. The best combination of features is selected for each
functional category using a divide-and-conquer k-nearest-neighbor method classifier. (E) Stress-specific interaction networks in individual conditions are
generated by assigning different functional coherence scores to each interaction of a protein depending on the interactor’s similarity in time series gene ex-
pression profiles. (F) After generating the selected features from D using the condition-dependent networks from E, the prepared 73 classifiers compute
a conditional functional map for the protein, indicating the quantitative possibility that the protein is in each function under each condition. Dynamic functions
under stressful conditions are identified by calculation of significant differences in the possibility degree in a stress condition. (G) The fraction of protein pairs
having the same process, function, or location (rows) shown for protein pairs involved in physical protein interaction (column 1), high coexpression (columns 2–4;
NEGATIVE, negative correlation; NO, no correlation; POSITIVE, positive correlation), and both physical interaction and high coexpression (columns 5–7). Gray
sectors indicate random expectation resulting from 100 permutation tests. (H) The average performance (area under the ROC curve (AUC) value) of S, N, or L
feature sets for process, function, and location. Composite indicates the performance of the selected feature sets for individual functional categories.
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proteins under diverse conditions. By integrating expression data
measured under a specific condition with a protein interaction
network pooling data from many studies, our method indicates
the probable location and function of each protein under that
condition. We apply the classification method to 17 different
stresses, revealing a landscape of dynamic changes in location
and function across the yeast proteome.

Results
Genome-Wide Prediction of Condition-Dependent Location and
Function Under Diverse Stresses. To predict condition-dependent
location and function under diverse stresses, we developed a
protein network-based prediction framework that uses diverse
features of both individual proteins and interacting neighbors
called a conditional function predictor (CoFP). We first accessed
the known locations and functions of all yeast proteins as de-
termined from previous high-throughput experiments and gene
ontology (GO) terms (Fig. 1A), focusing on 18 distinct locations
(locations), 33 high-level biological processes (processes), and 22
general molecular functions (functions) (SI Appendix, Table S1).
We next downloaded and combined the contents of the Bio-
GRID (27), DIP (28), and SGD (29) databases in addition to in
vivo physical protein–protein interactions (30). In total, 77,364
protein interactions between 5,778 yeast proteins were prepared
(Fig. 1B). For individual protein features, we used sequences,
chemical properties, motifs, and specific GO terms of each yeast
protein (Fig. 1C). Predictions of protein location or function were
based on an established approach that integrates information
about interacting neighbors in addition to single proteins as
indicators of protein function (31). Previously, we observed that
the co-occurrence of sequence, structure, or function between
a protein and its interacting partners is a strong predictor of
joint subcellular location (32). We applied forward selection to
choose feasible feature sets of high predictive power from the
pool of generated individual and network protein features, with
a network neighborhood restricted to nearest neighbors within
distance 2, using a divide-and-conquer k-nearest-neighbor method
(Fig. 1D). A dynamic context for condition-dependent location
and function was achieved through the concept of conditional
network neighborhoods, in which expression profiles gathered for
conditions of interest are projected onto protein–protein in-
teraction networks (Methods).
As a proof of principle, we applied this approach to predict

conditional locations, processes, and functions of 5,778 yeast
proteins under diverse stress conditions. To provide expression
profiles in different conditions, we used time series microarray
experiments from the Stanford Microarray Database (www.tbdb.
org) categorized into 17 stresses in addition to an untreated
stress-free condition (SI Appendix, Table S2). By assigning co-
herence scores based on coexpression degree (Methods), we
generated stress-dependent protein interaction networks for in-
dividual conditions (Fig. 1E). The stress-dependent coherence
scores under 18 conditions yielded stress-dependent protein
network features, resulting in a conditional function map with
degrees of possibility assigned to individual locations or func-
tions under distinct conditions (Fig. 1F). By comparing the
predicted functions between each stress condition with the
stress-free condition, we extracted dynamic protein states regarding
location, process, and function.

Protein Interaction and Expression Are both Useful in Protein
Location and Function Prediction. CoFP is based on the assump-
tion that interacting proteins that are also coexpressed have
similar locations and functions. To test this assumption, we ex-
amined the functional agreement between protein pairs divided
into various groups: (i) all interacting protein pairs; (ii) all
protein pairs with POSITIVE (Pearson correlation coefficient
γ ≥ 0.3),NEGATIVE (γ ≤−0.3), andNO correlation (−0.3< γ < 0.3)

between expression patterns; and (iii) interacting pairs with
POSITIVE, NEGATIVE, and NO correlation between the pat-
terns (Fig. 1G). Many interacting proteins share the same pro-
cess (>62%), function (>35%), or location (>58%) in contrast to
random expectation (P values of Z tests are almost zero using
100 permutation tests). Among the three types, process showed
the highest correlation, although it is the largest category,
whereas function showed the lowest correlation. However, the
function-sharing fractions of all protein pairs with POSITIVE
expression correlation were much less than those of all inter-
acting pairs. However, if we consider only the interacting pairs of
the POSITIVE expression pairs, then the function-sharing frac-
tion increases dramatically (Interaction + Expression in Fig. 1G).
We also observed these phenomena between all function–category
pairs (SI Appendix, Figs. S1–S3).
We next analyzed the predictive power of network features

generated by using (i) physically interacting partners only; (ii)
positively coexpressed partners only; and (iii) those features to-
gether. The best performance was achieved when both network
feature sets were incorporated; using just network features from
the gene expression network showed the worst performance (SI
Appendix, Fig. S4). Moreover, network features generated using
more than network distance 2 were less informative. Thus, we
integrated 9 kinds of individual protein static feature sets Ss and
20 kinds of network feature sets Ns (using neighbors’ S features)
and Ls (using neighbors’ locations or functions) up to network
distance D = 2. However, the whole 29 feature sets were not
required for function prediction (SI Appendix, Fig. S5). Using the
feature sets, therefore, we optimized prediction models by
finding feasible feature sets for each location or function using
the divide-and-conquer k-nearest-neighbor method framework
(in total, 73 models: 33 models for process, 18 models for loca-
tion, and 22 models for function) (Fig. 1H and SI Appendix, Figs.
S6 and S7). For process and location, the network features Ls,
based on known locations or functions of the neighborhood,
were better than both Ss and Ns, mainly because of the previous
high degrees of sharing of the same function that occurs between
interacting pairs in process and location compared with function
(shown in Fig. 1G). For function, however, Ss showed the best
performance compared with other kinds of feature sets. More-
over, GO-based features were more informative than other
features; thus, GO-based static and network features were
widely selected (SI Appendix, Fig. S6), and this high performance
was not achieved with randomized GO annotations (SI Appendix,
Fig. S8). Motif-based features and network features using
neighbors’ generally known functions were also useful for diverse
kinds of function and widely selected. Furthermore, the impor-
tance of static or network features was somewhat dependent on
functional purity within (SI Appendix, Fig. S9) or between (SI
Appendix, Figs. S1–S3) proteins (details in Discussion). We ob-
served that selecting different features per location or function
by using individual protein and network features resulted in
a dramatic increase in performance (SI Appendix, Fig. S10 shows
feature set selection, and SI Appendix, Figs. S11–S13 shows the
receiver operating characteristic curves). The performance of the
selected feature sets outperformed other kinds of simple feature
selection methods, including regression and entropy-based
methods (SI Appendix, Fig. S14).

Expression-Combined Network Models Revise Previously Known
Locations and Functions. We first generated a weighted protein
interaction network by using a functional coherence scoring
scheme on the time series expression profiles from the untreated
normal condition (SI Appendix, Table S2). Using this network,
we predicted 9,301 processes, 4,419 functions, and 4,336 loca-
tions with high possibility among the proteins with known loca-
tion or function (SI Appendix, Fig. S15). In addition to the strong
agreement with the previously known locations or functions (SI
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Appendix, Fig. S15 G–I), some proteins had different but strong
signals. For example, cysteine-three-histidine-1 (Cth1) was
originally mapped to DNA binding-related functions at the
beginning of this study. However, the prediction showed a higher
possibility for RNA binding than DNA binding (SI Appendix, Fig.
S16 A–C). Interestingly, the function of Cth1 has been recently
recurated as RNA binding rather than DNA binding in SGD
(www.yeastgenome.org) based on a recently discovered role in
mRNA degradation (33). Regarding process, we also observed
similar cases (SI Appendix, Fig. S16 D and E). After reassigning
function and process using more recent GO terms from the
SGD, 99 (51 previously unidentified and 48 previously mis-
labeled) cases for function and 608 (202 previously unidentified
and 406 previously mislabeled) cases for process were addition-
ally found to be correct (SI Appendix, Table S3).
Regarding location, we observed qualitatively similar results.

For example, ribosomal RNA processing-12 (Rrp12) was origi-
nally localized to the nucleus and cytoplasm by previous high-
throughput experiments (2), whereas our predictions produced
a higher signal at the nucleolus than other locations (Fig. 2A).
We, therefore, retested the localization of Rrp12 to find that it,
indeed, does accumulate strongly at the nucleolus (Fig. 2B). As

additional examples, we discovered a previously missed endo-
plasmic reticulum (ER) location for endomembrane protein-24
(Emp24) and an endosome location for vacuolar protein sorting-
33 (Vps33) (Fig. 2B). In the case of bud site selection-20
(Bud20), it was originally localized to the nucleus and ER, but
our prediction (Fig. 2C) and a new experiment (Fig. 2D) show
that Bud20 is almost completely absent at the ER. In another
example, the method correctly points out a previously mis-
identified nuclear location for assembly complementing factor-2
(Acf2) (Fig. 2D). In some cases, therefore, it seems that CoFP
can complement or revise the image readouts of single high-
throughput experiments. This power is observed mainly because
CoFP synthesizes evidence from multiple key interacting players
under a specific condition. For example, although many Rrp12
interactors localize to the cytoplasm, the summed functional
coherence score in normal conditions is higher in the nucleolus
than other locations (Fig. 2E), and location purity is highest in
the nucleolus (SI Appendix, Fig. S1A). In total, we revised 59
locations for 50 proteins; these predictions differed from a pre-
vious localization attempt but were correctly confirmed here by
new GFP experiments (Fig. 2 and SI Appendix, Fig. S17).

Protein Location Merged Magnified ( 4)

ERBud20

Nucleus
Acf2

NucleolusRrp12

EREmp24

EndosomeVps33

Protein Misidentified P
Ntr2 ER
Nvj1 Nucleus
Rps1a Nucleus
Tim17 Cytoplasm
Tim17 Peroxisome
Utp23 Mitocon
Vac14 Vacuole
Yro2 Bud

Protein Misidentified P
Acf2 Nucleus
Alg13 ER
Atp12 Cytoplasm
Bud20 ER
Gas5 Nucleus
Mdm31 Nucleus
Mrpl24 Nucleolus
Nba1 Cell Peri
Nsa2 Cytoplasm

Protein Unidentified P
Atg1 Cytoplasm
Atp12 Mitocon
Bap3 ER
Cpt1 ER
Elm1 Cytoplasm
Emp24 ER
End3 Actin
Ept1 ER
Erg10 Cytoplasm
Erp1 ER
Far1 Cytoplasm
Flc3 Vacu Memb
Fmp45 Cell Peri
Gap1 ER
Gic1 Bud
Gpd1 Cytoplasm
Hsf1 Cytoplasm
Kip1 Spin Pole
Mcd4 ER
Mdm31 Mitocon
Mrpl24 Mitocon
Mtr3 Cytoplasm
Nce102 Cell Peri
Noc4 Nucleolus
Nog1 Nucleolus
Nsa2 Nucleolus
Nsa2 Nucleus
Pex19 Peroxisome
Pmp2 ER
Pnc1 Cytoplasm
Rrp12 Nucleolus
Srp68 ER
Tat1 ER
Tim17 Mitocon
Tpk2 Cytoplasm
Tpo3 ER
Utp21 Nucleolus
Utp23 Nucleolus
Vac14 Vacu Memb
Vps16 Endosome
Vps33 Endosome
Ydc1 ER

A

C

B

0.82

0.00

AT
BD
BN
CP
CY
ES
ER
GL
LP
MI
MT
NO
NP
NU
PS
SP
VM
VO

0.82

Nucleus
(22)

Nucleolus
(32) Nuclear

periphery
(2)Rrp12

(80)
124

Cytoplasm
(34)

Unknown
(18)

79

5131
91

0

1
Possibility (P)

E

D

A
T
B
D
B
N
C
P
C
Y
E
S ER G
L

LP M
I

M
T

N
O
N
P
N
U
P
S
S
P
V
M
V
O

0.
00

0.
74

Rrp12

0.00

Bud20

Fig. 2. Experimental validation of predicted locations in a stress-free condition. (A) Forty-two previously unidentified locations but correctly predicted cases
as shown in new validation experiments. (Left) The heat map is the location prediction for Rrp12. By prediction, Rrp12 had the strongest signal (0.82 pos-
sibility) at nucleolus (NO). (B) Example validation experiments for 42 cases, including Rrp12, Emp24, and Vps33. Protein is marked in green, and location is
marked in red. Yellow indicates high overlap between the corresponding proteins and the location markers. Red squares indicate the area that is magnified
4×. RFP-tagged Nop56, Sec66, and Snf7 were used as location markers for the nucleolus, ER, and endosome, respectively. (C) Seventeen previously mis-
identified locations but correctly predicted cases as shown in new validation experiments. (Lower) The heat map is the prediction for Bud20. Although
originally localized to the ER, Bud20 had an almost zero possibility in this location, a prediction that we validated. (D) Some examples of the new experiments
for 17 cases, including Bud20 and Acf2. Protein is marked in green, ER location is marked in red, and nucleus is marked in blue. (Scale bar: 5 μm.) (E) The
coherence-mapped interaction network in location prediction of Rrp12. The node and edge sizes are proportional to the summed coherence score. The
numbers in parentheses of the nodes indicate the numbers of neighbors in corresponding localizations. Full names for the abbreviations of locations and
functions are shown in SI Appendix, Table S1.
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Expression-Combined Network Models Can Discover Unknown
Locations and Functions. The locations of 1,931 yeast proteins
could not be clearly mapped by previous genome-wide experi-
ments (2), primarily because of low GFP signals. Similarly, with
process and function, there were 1,683 and 2,207 proteins, re-
spectively, not annotated by GO as of January of 2008. Of these
uncharacterized proteins, 990 processes, 670 functions, and 1,277
locations were predicted with high possibility (SI Appendix, Fig.
S18 and Tables S4–S6). To investigate the performance of these
predictions, we remapped their locations and functions using
updated GO terms (SI Appendix, Tables S7–S9). In summary, the
performance for unannotated proteins was 0.51 precision, 0.99
specificity, and 0.95 accuracy for process; 0.65 precision, 0.99
specificity, and 0.95 accuracy for function; and 0.64 precision,
0.98 specificity, and 0.93 accuracy for location (SI Appendix,
Fig. S19).

Discovering Stress-Dependent Locations and Functions of Yeast
Proteins. Next, we analyzed the time series expression profiles
performed under each of 17 different stresses (SI Appendix, Fig.
S20 and Table S2) to calculate functional coherence scores be-
tween interacting protein pairs under each condition (Methods),

similar to those calculated for the untreated stress-free condi-
tion. This process resulted in a dynamic interaction network, in
which each interaction is assigned a different score in each stress
condition. We then predicted conditional locations and functions
for 5,778 yeast proteins subject to 17 different stress conditions.
In most cases, the predicted locations or functions under stress
were consistent with their locations or functions under untreated
conditions (details in SI Appendix, Fig. S21).
To test the performance of the conditional location pre-

dictions, we experimentally tested the predicted locations of 100
randomly selected proteins under dithiothreitol (DTT) and an-
other 100 proteins under methyl methanesulfonate (MMS). DTT
is a strong reducing agent that promotes reductive stress, and the
intracellular redox state can influence many protein functions
and activities (34). MMS is an alkylating agent inducing DNA
damage, and mutations in many DNA damage response genes
have been implicated in neurological diseases and cancer (35).
For example, the predicted locations of Aim37 (Mic27; mito-
chondrial contact site and cristae organizing system-27), cell di-
vision cycle-19 (Cdc19), and Esa1p-associated factor-3 (Eaf3)
under DTT treatment were mitochondrion, cytoplasm, and nu-
cleus, respectively (Fig. 3A), all of which were validated by
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follow-up imaging (Fig. 3B). Aim37, cap associated factor-20
(Caf20), and chromosome segregation-2 (Cse2) were predicted
to be in the mitochondrion, cytoplasm, and nucleus, respectively,
under the MMS condition (Fig. 3C), which were also correctly
validated (Fig. 3D). In total, the precision and recall were 0.86
and 0.79, respectively, under DTT treatment and 0.89 and 0.79,
respectively, under MMS treatment for the randomly chosen
proteins (Fig. 3 E and F). We observed that this performance was
reasonably stable, even when errors were introduced into the
underlying protein–protein interaction network (SI Appendix,
Fig. S22). Even when 30% of all known interactions were
replaced by erroneous interactions, the average decrease was
only 0.02 and 0.0006 in sensitivity and specificity, respectively,
and these decreases were not statistically significant. Moreover,
CoFP, which uses features from both individual proteins and
network neighbors, showed gradual decrease in performance
with less network coverage, indicating potential applicability to
other organisms with fewer known protein interactions, including
human, worm, fly, and plant (SI Appendix, Fig. S23).

Mapping a Global Landscape of Dynamic Locations and Functions.
Next, we sought to identify and study all proteins with loca-
tions or functions that differed between stress and normal con-
ditions. In total, we identified 9,459 significant differences for
process, 1,601 significant differences for function, and 2,732

significant differences for location for all 17 stresses (Methods
and Fig. 4A). For example, one prediction showed that phos-
phorylated after rapamycin-32 (Par32) had a protein-binding
molecular function in the untreated condition (Fig. 4B) but
transferase activity when subject to diauxic shift, heat, and RNA
stability stresses. Twenty S rRNA accumulation-1 (Tsr1), a pro-
tein required for processing of 20S precursor of ribosomal RNA
(pre-rRNA) in the cytoplasm, was predicted to be most likely
located within the cytoplasm and the nucleus under the stress-
free condition, whereas under MMS, our method indicated
a highly increased signal at the nucleolus but a decreased signal
at the cytoplasm (Fig. 5A). As shown in the fluorescence images
(Fig. 5A), the conditional locations of Tsr1 changed in accor-
dance with our predictions: Tsr1, a mainly cytoplasmic protein
under stress-free conditions, was predominantly localized to the
nucleolus under the MMS condition. Moreover, CCR4 associated
factor-120 (Caf120), a part of the CCR4-NOT transcriptional
regulatory complex, and dicarboxylic amino acid permease-5
(Dip5), a dicarboxylic amino acid permease, also changed their
locations under the MMS condition, which is consistent with the
predictions (disappearance from the bud neck and cell periph-
ery, respectively) (Fig. 5 B and C). Under the DTT condition,
suppressor of lethality of kex2 gas1 double null mutant-6 (Skg6),
a potential Cdc28 substrate (36), was predicted to disappear
from the bud, bud neck, and cell periphery (Fig. 5D). Correlated
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with this prediction, we observed that most Skg6 disappeared
from locations, including bud, bud neck, and cell periphery,
under DTT treatment. Low temperature essential-1 (Lte1),
a putative GDP/GTP exchange factor, and necessary for nuclear
function-2 (Nnf2), with unknown function, also changed their
subcellular locations under the DTT condition in accordance
with the predictions (disappearance from bud and ER, respec-
tively) (Fig. 5 E and F). These validated locations were less
well-predicted using expression profiles with additional (sim-
ulated) noise, implying that good expression data are critical in
identification of dynamic functions and locations (SI Appendix,
Fig. S24).
The global landscapes of dynamic locations and functions are

shown in Fig. 4 C–E. The most frequent changes in location were
from mitochondrion to nucleus (4.54%) or ER to Golgi (3.27%)
(Fig. 4C). With function, many proteins were related to protein
binding, like Par32 (Fig. 4D). Moreover, many proteins (7.92%)
related to transport lost this role with respect to process (Fig.
4E). Instead, many proteins (9.06%) acquired DNA metabolic
process when subjected to stress.

Changes in Protein–DNA Binding of RNA Polymerase I Subunit A43,
Inositol Requiring-2, and Ime2-Dependent Signaling-2 Under Stress.
Finally, we sought to validate proteins having molecular func-
tions that were predicted to change under DTT and MMS stress
conditions. We selected the DNA-binding (GO:0003677) cate-
gory for experimental follow-up because of its biological rele-
vance to transcription. GO terms define the DNA binding as any
molecular function by which a gene product interacts se-
lectively and noncovalently with DNA, and it includes various
subontologies, such as the sequence-specific DNA binding
(GO:0043565) and the positive/negative regulation of DNA
binding (GO:0043392/0043388; www.geneontology.org). CoFP
predicted that RNA polymerase I subunit A43 (Rpa43) de-
creases in the DNA-binding functionality under DTT. Because
RNA polymerase I is an rDNA-binding protein complex for
rRNA transcription, we tested the reduction in rDNA binding of
Rpa43 under DTT treatment. After 2 h incubation with the
treatment of 2.5 mM DTT, the association of Rpa43 with the
NTS1 region of rDNA was considerably decreased (Fig. 6A). A
quantitative real-time PCR assay confirmed the decrease in the
DNA-binding affinity of Rpa43 under the DTT condition (Fig.
6B). The expression level of Rpa43 was similar before and
after the DTT treatment (Fig. 6C), indicating that the observed

decrease in DNA-binding affinity did not result from a lower
expression of Rpa43. Interestingly, we also found that some of
Rpa43 was translocated to the nucleoplasm from the nucleolus
under DTT (Fig. 6D).
In contrast to Rpa43, inositol requiring-2 (Ino2) was predicted

to increase in the DNA-binding function under DTT. To validate
this prediction, we measured the binding of Ino2 to the promoter
region of arginine requiring-4 (ARG4), which encodes an argi-
ninosuccinate lyase, catalyzing the final step in the arginine
biosynthesis pathway. As predicted, the binding of Ino2 to the
promoter region of ARG4 was increased under the DTT con-
dition (Fig. 6E). Consistent with this observation, the expression
of ARG4 increased more than 10 times with DTT treatment (Fig.
6F). In addition, under the MMS condition, we found that Ime2-
dependent signaling-2 (Ids2), a protein involved in the modula-
tion of Ime2 activity during meiosis, exhibited decreased asso-
ciation with the promoter region of sporulation specific-1
(SPS1), a putative protein serine/threonine kinase required for
correct localization of enzymes involved in spore wall synthesis
(Fig. 6G). Consistent with these findings, MMS treatment has
been found to reduce the expression of SPS1 (37).

Discussion
To predict the condition-specific localization and function of
proteins, CoFP adds context to static measurements of protein–
protein interactions by integrating these networks with condition-
specific gene expression profiles. We have shown that CoFP can
discover dynamic changes in protein location and function under
diverse stresses on a proteome-wide scale (Figs. 4–6) as well as
condition-dependent location and function (Figs. 2 and 3). The
core concept of CoFP is that physically interacting proteins with
high coherence scores in mRNA expression share similar func-
tionalities (Fig. 1G). One then need only to look at the inter-
acting partners that are highly coherent in a condition to make
inferences regarding dynamic localization and other functional-
ity. Similar ideas have recently been applied to predict proteomic
changes in glioma (38), in which conditional network neighbors
were helpful for predicting the conditional localization of cancer
proteins. In principle, CoFP can map conditional functionality
for any condition for which gene expression profiles are pro-
duced, such as stem cell differentiation, response to drugs, or
external stress on the system. A web server for the prediction
of condition-dependent and dynamic locations and functions is
available at http://nbm.ajou.ac.kr/cofp/.
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CoFP uses possibility rather than probability theory. Unlike
probability theory, in possibility theory, the sum of possibilities
for all possible outcomes may be >1 or <1. Here, this property
allows us to express the fact that there can be several simulta-
neous functions or locations for a single protein in a single
condition (the sum of all possibilities is >1). However, some-
times, there is no most likely function for a protein, and we wish
to capture this general uncertainty (in which case, the sum of all
possibilities is <1).
We observed that the importance of static or network features

in CoFP was somewhat dependent on functional purity within or
between proteins. In case of peroxisome location, for example,
network features are more informative (SI Appendix, Fig. S7A)
owing to higher functional purity of interacting proteins in per-
oxisome (SI Appendix, Fig. S1). For ligase molecular function,
however, single-protein features were more informative than
network features (SI Appendix, Fig. S7C), mainly owing to its
higher functional purity of individual proteins in ligase (SI Ap-
pendix, Fig. S9A) compared with its relative lower functional
purity of between interacting neighbors in ligase (SI Appendix,
Fig. S3).
In the feature set selection for individual processes and

functions, we used GO annotations as parts of both training and
evaluation. To reduce a circularity problem, we used newly
assigned GO terms to check the performance of proteins without

the GO terms used previously. Moreover, we here experimen-
tally validated some of conditional and dynamic functions,
including locations under DTT and MMS conditions in addition
to a stress-free yeast extract/peptone/dextrose (YPD) condition,
for performance assessment of conditional and dynamic func-
tions, including locations. For example, we experimentally vali-
dated previously unidentified locations or previous experimental
errors of yeast proteins under the YPD condition (Fig. 2 and SI
Appendix, Fig. S17) and checked the performance of conditional
locations using 100 proteins under MMS and DTT conditions
(Fig. 3). We also experimentally tested the dynamic locations
and functions under the MMS and DTT conditions (Figs. 5 and
6). Other predicted functions under diverse stresses should be
tested in a near feature.
Among the dynamic changes in localization (Fig. 4), we cor-

rectly confirmed that Tsr1, Caf120, and Dip5 changed locations
under the MMS condition (Fig. 5). Tsr1 moved from the cytosol
to the nucleolus after MMS treatment. This protein is required
for processing 20S pre-rRNA in the cytoplasm and associates
with pre-40S ribosomal particles (39). Dynamic localization of
Tsr1 was also previously observed in cells depleted of ribosomal
protein of the small subunit-15 (Rps15), a protein component of
the 40S ribosomal subunit. Rps15 depletion leads to retention of
20S pre-rRNA-containing late pre-40S particles and its associ-
ating protein Tsr1 in the nucleolus (39). Given that MMS is
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a DNA-damaging agent and that it induces stalled replication
forks (40), our data suggest that the MMS-induced DNA damage
pathway is linked to ribosome biogenesis. Consistent with this
notion, treatment of cells with MMS reduces the expression of
proteins involved in the synthesis and assembly of ribosomes,
including the DEAD box helicase Dbp3, the H/ACA box protein
Nhp2, the late preribosomal RNA processing and particle as-
sembly factors Nip7 and Nsr1 (nucleolin), and the C/D box
proteins Nop1 (fibrillarin), Nop56, and Nop58, in addition to
several ribosomal proteins (41). Taken together, it seems clear
that DNA damage induces a multifaceted inhibition of ribosome
biogenesis. Moreover, Caf120, a component of the evolutionarily
conserved CCR4-NOT transcriptional regulatory complex in-
volved in controlling mRNA metabolism (23), and Dip5, a di-
carboxylic amino acid permease mediating high-affinity and
high-capacity transport of L-glutamate and L-aspartate (26), also
changed their locations under the MMS condition. Given that
MMS causes DNA damage and consequent cell cycle arrest at
multiple checkpoints, it is plausible that mRNA metabolism and
amino acid transport are dysregulated under the MMS condi-
tion. Presumably, the localization changes of Caf120 and Dip5
reflect the functional changes involved in the dysregulation of
mRNA metabolism and amino acid transport. We also correctly
confirmed that Skg6, Lte1, and Nnf2 changed their locations
under the DTT condition. However, previous knowledge related
to these proteins is limited, and whether the molecular functions
of Skg6, Lte1, and Nnf2 and the biological processes involving
them are regulated in a redox-dependent manner is not clear
at present.
For molecular functions, we correctly validated the decrease

or increase in the DNA-binding function of Rpa43, Ino2, and
Ids2 under the MMS or DTT condition. Rpa43 showed de-
creased association with the NTS1 region of rDNA under the
DTT condition. Rpa43 was also translocated to the nucleoplasm
from the nucleolus under this stress. The decrease in the DNA-
binding function of Rpa43 under the DTT condition did not
result from a lower expression of Rpa43. These observations
suggest that DTT treatment may reduce rRNA transcription and
consequently, compromise ribosome biogenesis. Consistent with
this notion, several ribosomal proteins exhibit a decrease in ex-
pression under the DTT condition (42). Ino2 is a component of
the heteromeric Ino2/Ino4 basic helix–loop–helix transcription
activator that binds inositol/choline-responsive elements (43, 44).
We observed that the binding of Ino2 to the promoter region of
ARG4 was increased under the DTT condition and that the ex-
pression level of ARG4 increased more than 10 times. A similar
expression pattern of ARG4 was reported previously (42). It
seems that the binding of Ino2 to the promoter region of ARG4
is directly related to the activation of ARG4 expression.
In summary, the network-based location and function pre-

diction framework can correctly discover previously un-
identified condition-dependent and dynamic locations and
functions of yeast proteins under diverse stresses. Additional
investigation to confirm the predictions derived from our anal-
ysis will provide valuable information for functional annotation
of unknown proteins and lead to a deeper understanding of
cellular dynamics under stress.

Methods
Known Locations, Functions, and Interactions. For subcellular locations (loca-
tion) of yeast proteins, we downloaded the localization data in the work by
Huh et al. (2), which used GFP-tagging experiments to annotate 3,919 pro-
teins with up to 22 distinct locations. Of 22 locations, we excluded punctate
composite and combined the Golgi apparatus-related locations, including
Golgi apparatus, late Golgi, early Golgi, and ER to Golgi, into one location (SI
Appendix, Table S1A). For test of predicted locations using GO cellular
component terms, we used the mapping relationship shown in SI Appendix,
Table S1A. For other kinds of general protein function, we downloaded the
GO annotations from the AmiGO database (http://amigo.geneontology.org/

cgi-bin/amigo/go.cgi) and assigned biological process (process) and molecular
function (function) to yeast proteins based on the GO Slim categories (33 bi-
ological processes and 22 molecular functions) (SI Appendix, Table S1 B and C).
Note that we only used GO annotations supported by experimental evidence
codes. For protein interaction data, we combined the contents of the BioGRID
(27), DIP (28), and SGD (29) databases and recent in vivo interactions (30).

Analysis of Gene Expression Profiles. For yeast gene expression profiles, we
downloaded the microarray experiments from the expression Stanford
Microarray Database (www.tbdb.org) and categorized them by 17 major
stresses, including leucine starvation, uracil starvation, nitrogen starvation,
DTT treatment, γ-radiation, H2O2 oxidative stress, heat shock, cold shock,
menadione treatment, MMS treatment, phosphate starvation, calcium os-
motic, salt treatment, hypoosmotic, hyperosmotic, and RNA stability, in
addition to a stress-free normal condition (SI Appendix, Table S2). From the
downloaded expression, we used the experiment sets with high coverage of
the proteins in the protein interaction data. When replicated samples are
available, we calculated the median values among the expression levels
of the replicates. In the cases of two-channel microarray platforms, we
extracted the total expression values for a specific channel of interest to
obtain the RNA abundances. Within a platform, we applied quantile nor-
malization with median values across samples.

Functional Coherence Score Scheme. We calculated the functional coherence
score between interacting protein pairs to generate a condition-dependent
interaction network under a specific condition where time series microarray
expression profiles are produced. A functional partnership score between
proteins a and b under a specific condition is

Φða,bÞ=−log2 ψðρða,bÞÞ,

ρða,bÞ= 1
n− 1

Xn
i=1

�
Xi −X
SX

��
Yi −Y
SY

�
,

where ρða,bÞ is the correlation degree of a Pearson correlation coefficient
between gene expression abundances Xi (of a) and Yi (of b) and ψ is the
right area under the probability distribution of correlation degrees of all
interacting protein pairs from an input value. If a and b are not a direct
interaction, then we multiply all Φðp,qÞ in a path between a and b. With
multiple paths, we choose the one with the maximum value.

Prediction of Condition-Dependent and Dynamic Location and Function. In
total, 29 kinds of single-protein or network feature sets were generated for
each protein (31). Instead of using whole features, we selected a feasible
feature set for each functional category owing to diversity of feature per-
formance across different kinds of functionality. However, there might exist
an overfitting problem to training data. To reduce the problem, as also
discussed in our previous studies (31), we applied a leave-two-out cross-
validation approach with an AUC measure. The feature selection scheme
was well-applicable to diverse cases of multiple species, including human,
worm, fly, and yeast as well as plant (31, 32). In total, 73 models are generated
for individual functional categories. After generating good future sets for in-
dividual functional categories, we further generate a possibility degree of
a protein for each functional category under a condition. Similar to the work by
Lee et al. (38), the possibility degree Pf of a function fwith a confidence degree
c is defined as

Pf ðcÞ=

ΔP
f ðcÞ
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f

−

 
1−

ΔN
f ðcÞ
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f

!
+ 1

2
,

where TP
f and TN

f are the total areas under the distribution of condition
degrees of positives and negatives, respectively, regarding a function f and
ΔP

f ðcÞ and ΔN
f ðcÞ are the areas under the distribution of confidence degrees

of positives and negatives until c, respectively. A higher value of Pf (∼0–1) means
a higher degree of possibility that a protein has the function f. A significant
difference on the possibility degrees between a stress condition and a stress-free
normal condition is regarded as a dynamic functionality (P value < 0.01 of Z tests
using the results of 30 sample permutation tests from all expression
data used here).

DTT and MMS Treatment and Microscopic Analysis of Yeast Proteins. Yeast cells
were grown to midlogarithmic phase in synthetic complete (SC) medium at
30 °C, and one-half of the cells were collected to serve as the untreated control
(regarded as a normal condition). Remaining cells were exposed to 2.5 mMDTT
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(D1037; BIOSESANG) or 0.01% MMS (M4016; Sigma) and then incubated for
2 h. For microscopic analysis, we used 96-well glass-bottom microplates (What-
man) pretreated with concanavalin A (L7647; Sigma) to ensure cell adhesion.
Microscopy was performed using a Zeiss Axiovert 200M Inverted Microscope as
previously described (45). Fluorescence images of individual samples were taken
using an FITC filter set (excitation band pass filter, 450–490 nm; beam splitter,
510 nm; emission band pass filter, 515–565 nm), a Rhodamine filter set (exci-
tation band pass filter, 546 nm; beam splitter, 580 nm; emission long pass filter,
590 nm), and a DAPI filter set (excitation band pass filter, 365 nm; beam splitter,
395 nm; emission long pass filter, 397 nm). At least 50 cells were analyzed per
each experiment. We analyzed subcellular localization of GFP-fused proteins by
visual inspection of images and then reconfirmed it by colocalization assay as
described previously (2).

ChIP Assay and Quantitative Real-Time PCR Analysis. ChIP assays were per-
formed as previously described (46). For ChIP experiments using tandem affinity
purification (TAP)-tagged proteins/strains, prewashed IgG Sepharose Beads
(17-0969-01; GE Healthcare) were used. ChIP samples were analyzed by
quantitative real-time PCR using SYBR Green and the Applied Biosystems 7300
Real-Time PCR System. Relative fold enrichment was determined by calculating
the ratio of the target region to CUP1, an internal control, as follows: [target
region (IP)/CUP1 (IP)]/[target region (input)/CUP1 (input)]. The sequences of PCR
primers used in ChIP experiments are shown in SI Appendix, Table S10. Each set
of experiments was performed at least three times.

Western Blot Analysis. Yeast cells grown to midlogarithmic phase in SC medium
were harvested, washed three times with PBS, and disrupted by bead beating in
5 volumes lysis buffer (20 mM Tris·Cl, pH 7.5, 1 mM EDTA, 1 mM PMSF, 1 mM
benzamidine, 1 μg/mL leupetin, 1 μg/mL pepstatin). Cell debris was removed by
centrifuging at 5,000 × g for 5 min, and the remaining cell extract was centri-
fuged at 14,000 × g for 30 min. The supernatant was transferred to a new tube
and mixed with SDS/PAGE sample buffer. SDS/PAGE and Western blot analysis
were performed by standard methods using HRP-conjugated antibodies.

Quantification of ARG4 mRNA. Total RNA was isolated from yeast cells using the
RNeasy MiniKit (Qiagen). cDNA for RT-PCR was generated using the ProtoScript
First Strand cDNA Synthesis Kit (New England Biolabs). The amounts of
ARG4 and ACT1 mRNA were analyzed by quantitative real-time RT-PCR
using the Applied Biosystems 7300 Real-Time PCR System. Amplification
efficiencies were validated and normalized against ACT1, and fold
increases were calculated using the 2−ΔΔCT method (47). The primers used
for the amplification of ARG4 were 5′-CTGAAAGACTTGGTCTAAGC-3′
and 5′-CAATTGCTTCAATACAGCAG-3′, and those used for ACT1 were 5′-
TGACTGACTACTTGATGAAG-3′ and 5′-TGCATTTCTTGTTCGAAGTC-3′. All reac-
tions were carried out in triplicate.
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